Design and test of an integrated Sigma-Delta analog-to-digital converter for X-ray Computed Tomography

Christian Bäumer, Roger Steadman, Gereon Vogtmeier X-Ray Imaging Systems, Philips Research Europe (Aachen) Michael Gnade, Armin Kemna, Dirk Weiler Fraunhofer-Institute Microelectronics Circuits and Systems Duisburg

05.07.2006

Outline

- Introduction to Computed Tomography
- Realization of a 'digital pixel'
- Experimental Results
- Design of a Decimation and Low-pass Filter for CT
- Conclusion and Outlook

CT Principle

Detector channel (generically):

Overview: in-pixel $\Sigma\Delta$ modulator

• Specifications:

- photodiode and electronics combined in digital pixel (monolithic approach)
- 10 kHz bandwidth
- 4x4 pixel array
- Design Issues:
 - 3rd order modulator
 - f_s = 3 MHz (oversampling ratio OSR =150)

Test structures of in-pixel $\Sigma\Delta$ modulator

low capacitance photodiode (\approx 7 pF)

first test samples in PGA package with open lid

IWORID-8 2006, C. Bäumer, Philips Research Europe

$\Sigma\Delta$ -modulator: Implementation

- feedforward structure of feedback loop, 1-bit quantizer
- driven by 2 non-overlapping clocks (3 MHz)
- differential design
- switched-capacitor implementation, 0.8 μ m CMOS process

Quantization noise of $\Sigma\Delta$ -modulator

NTF = noise
transfer function
STF = signal
transfer function

Result: Implemented modulator is 3rd order in signalband and 2nd order above

Noise shaping: shift quantization noise to higher frequencies (modulation noise)

Experimental results: Power Spectra

track down excess noise to circuit design!!!
 → Spectre (Cadence) full analog extracted simulation reproduces electronics noise!

Results:

- bandwidth
 ≈ 10 kHz
- gradient of NTF according to theory
- noise level
 - $\approx 20 \text{ pA}_{\text{RMS}}$ @ 10 kHz, factor > 3 higher than predicted!

Experimental results: Linearity of digital pixel

Measurement:

- Linear light source (DC)
- infrared filter and integrating sphere
- reference photodiode and Keithley pAmeter
- measurement protocol of descending light values

Decimation Filter Design

Frequency Response: $\Sigma \Delta$ vs. Integrator

Filter operation has effect on noise and **signal !** Top-level view of $\Sigma \Delta$ ADC and Integrator-type ADC:

Integrator + ADC in CT DAS, e.g. current-tofrequency converter, DDC11x:

Impact of Filter Operation on Reconstructed Images

- simple simulation with 500 views per rotation (FBP)
- Apply different filter structures to detector signals in time domain!

Summary and Outlook

- Samples of Σ∆-based CMOS digital pixel operational and succesfully been tested
- Bandwidth, linearity (< 1%) according to specs, SNR too low!
- Excess noise attributed to circuit non-idealities (simulations, counter-measures proposed)
- Decimation filter designed and implemented in FPGA
- $\Sigma\Delta$ -converters provide means to tailor frequency response in rotational direction!
- Outlook: low-power design
- Outlook: more logic into pixel, e.g. with 0.35 μm CMOS process with high voltage option
- <u>Thanks to:</u> S. Borucki, C. Herrmann, S. Dill, S. Eick, J. Wiegert, K.J. Engel (Philips Research Aachen), B.J. Hosticka (IMS Duisburg)

