

EBIC and IBIC imaging on polycrystalline CdTe

N. Baier, A. Brambilla, G. Feuillet, S. Renet CEA/Grenoble-LETI, 17 rue des Martyrs, 38054 Grenoble Cedex 9

P.J. Sellin, A. Lohstroh

University of Surrey, Department of Physics, Guildford, GU2 7XH

- Principles
- Sample
- EBIC mapping
- IBIC mapping
- Conclusion

Introduction

- about the polycrystalline CdTe material
- Beam Induced Current principles
 - EBIC and IBIC descriptions
- Sample properties
- EBIC results
- IBIC results
- Summary, conclusion and prospects

Introduction Introduction

- Principles
- Sample
- EBIC mapping
- IBIC mapping

Conclusion

Polycrystalline CdTe: advantages and drawbacks

Monocrystalline: - very good charge transport properties

- suitable for spectrometry.
- high cost processes (THM, HPBM)
- limited dimensions ($\approx 1 \text{ cm}^3$)

- *Polycrystalline*: low cost growth processes
 - large detection surface
 - poorer properties (but good resistivity)
 - greater amount of defects: chemical and structural

⇒ structural defects and local properties studies

Beam Induced Current principles

- Principles
- Sample
- EBIC mapping
- IBIC mapping
- Conclusion

<u>Principle</u>: high resolution mapping of current induced by a focused beam in a polarized detector.

- The Electron-BIC experiment:
 - e⁻ beam of a SEM microscope
 - direct measurement of the induced current
 - measurement beneath the electrical contact

- The Ion-BIC experiment:
 - 2.58 MeV protons
 - penetration depth of protons $\approx 53~\mu m$
 - Charge Collection Efficiency (CCE)

Polycrystalline CdTe sample

- Principles
- Sample
- EBIC mapping

- IBIC mapping
- Conclusion

Sample properties and measurement conditions:

- thickness
- resistivity
- mobility
- applied voltage

350 µm

 ρ = 4e10 Ω .cm

 $\mu_e\approx 500~cm^2/V/s$

 $HV_{S} = -100 V$ for EBIC = -150 V for IBIC

SEM image of a cleaved polycrystalline CdTe sample

EBIC results on poly-CdTe

- Principles
- Sample
- EBIC mapping
- IBIC mapping

- Conclusion
- <u>Beam</u>: $HV_B = 30kV$, current $I_B = 4 pA$ to 53 nA - surface measurement, high charge creation density

- (dispersion < 10%)
- grain boundaries: 6 nA (\approx 22%) current decreasing

EBIC results on poly-CdTe

- Principles
- Sample
- EBIC mapping
- IBIC mapping
- Conclusion

I_{Beam} = €¢pA Estimated created current ≈ €€€\$pA

When increasing excitation:

- appearance of in-grains structures
- confirmed with CL measurements

-79.16u

-40,16u

\Rightarrow correlation between low response and low luminescence

Cathodoluminescence : crystal luminescence due to excitation by electrons. Measurement of the band to band recombination spectrum in semi-conductors.

Courant moyen A

36,43u

600

800

area: 420 x 360 µm²

900

800

700 600 500

400 · 300 · 200 · 100 · Image courant

Cathodoluminescence

EBIC results on poly-CdTe

- Principles
- Sample
- EBIC mapping
- IBIC mapping
- Conclusion

 $I_{Beam} = 14 \text{ nA}$ Estimated created current $\approx 97 \mu \text{A}$

When increasing excitation:

 grains influence each other near the boundaries

 \Rightarrow electrical field effects (space charge, ...) ?

IBIC results on poly-CdTe

- Principles
- Sample
- EBIC mapping
- IBIC mapping

Conclusion

Output:

Beam:

Charge Collection Efficiency (CCE) = Q_{mes} / Q_{dep} (for each event)

 $E_p = 2.58 \text{ MeV}$; $\approx 2 \text{ kHz events rate}$

Proton penetration range in CdTe: 53 μm \approx 10 events / pixel

- very few dark areas
 - 1% for CCE < 30%
 - 7% for CCE < 40%
- good overall CCE response

IBIC results on poly-CdTe

- Principles
- Sample
- EBIC mapping
- IBIC mapping

- Conclusion
- <u>μτ product</u>:
- using Hecht model, possibility
 to calculate μτ
 (example with monocrystalline CZT material)

CCE vs. Voltage sample in monocrystalline CZT [1]

- For poly-CdTe
 - still in linear part of the model: MFP < sample thickness
 - no measure at higher voltage

– validity of the model:

• electric field distribution ?

[1] <u>A. Lohstroh</u> et al., High-resplution mapping of the mobility-lifetime/broduct in addiminion and the second states (gnatics) robe, J. Phys: Condens Matter 16 (2004) 67

Summary 2006 Introduction

- Principles
- Sample
- EBIC mapping 🔎
- IBIC mapping
- Conclusion

Principal usefulness of poly-CdTe: X and y detection

 \Rightarrow high charge density excitation to explore its particularities

- response homogeneity
- very few dark areas

- inner structures
- electrical field effects
- good CCE response

Conclusion and prospects

- Principles
- Sample
- EBIC mapping
- IBIC mapping
- Conclusion
- Beam Induced Current mappings reveal:
 - at high charge creation density
 - in-grains structures with poor luminescence
 - local space charge effects near the boundaries
 - at low charge creation density
 - homogeneous response
 - slightly visible grain boundaries effects
- Complementary measurements:
 - lateral EBIC and IBIC studies to see
 - "bulk" structures and properties
 - electrical field distribution in the detector

Thank you for your attention