Especial Bump Bonding Technique for Silicon Pixel Detectors

E. Cabruja, M. Bigas, M. Ullán, G. Pellegrini, M. Lozano Centre Nacional de Microelectrònica Spain

Outline

- Motivation
- Summary of bump bonding techniques
- Sn/Ag bumping
- Technique evaluation
- Conclusion

Motivation

- Hybrid Pixel Detectors present serious difficulties at packaging level. They have arrays of connection pads which have to be routed to the ROIC.
- Bump bonding flipchip connection is a good approach when the detector chip can be placed upside down (X-rays)
- As the distance between pixels is very small and the number of bumps very high, only some of the bumping strategies are suitable. Among them, bump electroplating.

Motivation

Sn/Ag electroplating has been chosen because:

- 1. It is leadfree.
 - Ban directive for Pb
 - Pb is an alpha particle emitter, so a soft error inducer.
- 2. It has a moderate eutectic melting point (221°C)
- 3. It is suitable for X-Ray detectors

Bump bonding flip chip technology

- Process steps:
 - Rerouting
 - Under Bump Metallisation (UBM)
 - Bumping
 - On substrate or on flip chip, depending on the application
 - Flip chip
 - Reflow, anneal or adhesive bonding
 - Underfilling

Bumping technologies

- Evaporation through metallic mask
- Evaporation with thick photoresist
- Screen printing
- Stud bumping (SBB)
- Electroplating
- Electroless plating
- Conductive Polymer Bumps

Screen printing

- Process steps
 - Stencil alignment
 - Solder paste deposition with a squeegee
- Characteristics
 - Minimum pitch: 150 µm
 - Stencil printing thickness: 100 50 µm
 - Same bump height
 - Solder pastes:
 - Sn/Pb, Sn/Pb/Ag, Sn/Ag, Sn/Sb
 - Pb free pastes: In, Pd, Sn/Ag
 - Most widespread
 - Very high yield

Screen printing => Rerouting

- 150-400µm pitch implies that peripheral pads have to be re-distributed into an array in order to have access to all of them.
- Three-step process + UBM
 - 2 polyimides
 - 1 re-routing aluminum
- High cost: 4 masks + several Clean Room steps

Not suitable for Pixel Detectors

Sn/Ag Electroplating: Flow Chart

Sn Electroplating: Final Bump

Sn electroplating: Process Flow Chart

- UBM deposition: Ni Electroless
- Photoresist processing AZ-4362 20µm
- Solder electroplating: Tin bath + wafer holder setup
- Photoresist removal: Organic solvent
- Seed layer removal: Especial bath
- Solder reflow: Glycerol bath

UBM + Seed layer definition

- Process steps
 - Pad conditioning
 - Ni electroless deposition
 - Ag sputtering (700nm)
- Characteristics
 - No need for electrodes
 - Photolithography not required
 - Bump material: Ni
 - Minimum pitch 50 µm
 - Bump diameter 20 µm
 - Bump height 2 µm

UBM: Ni Electroless

- SEM pictures taken after final Ni Electroless process.
- 2.5µm are deposited onto Al pads.

Sn Electroplating: Deposition rate

The deposition rate is proportional to the applied current, but too much current is responsible for a higher Sn roughness and also for a bad adhesion between Sn and Ag

After Photoresist removal

Photoresist is removed using an organic solvent
Sn 'muffins' act as etch mask during Ag removal

Reflow in Glycerol

After reflow in a glycerol bath:

• The bumps become spherical

• Ag disolves into Sn and forms the eutectic alloy Sn/Ag(3.5%) Enric Cabruja. IWORID 2006

Confocal Microscope: Sn Profile

Auger Spectroscopy Analysis

Test Structure Design (I)

- Test structure made of two sides for flip chip: chip side (c-side) and detector side (d-side)
- Daisy chain structure kind such as if one bond fails ('bad bond') the whole chain fails.

- *N* chains made of *L* bump bonds evenly distributed across the assembly for statistical calculation.
- *N*, *L* have to be properly chosen for the yield range of interest of the particular application.
- Case: 256 x 256 assembly (55 μm pitch) 504 chains of 50 bonds
- Chains connected to a central ground bus and to an array of probe card test pads (1x16) for fast easy test
- Automatic conductivity measurement of each chain

Test Structure Design (II)

D-side:

- Central ground bus ightarrow
- Chains in columns \mathbf{O}
- Even distribution of chains \mathbf{O}

Assembly

Conclusion

- A bumping technique allowing very fine pitch has been developed
- Yield tests are being carried out
- Other alternatives such as including Cu into the bumps are being taken into consideration