The Italian project for a proton Computed Tomography (pCT) device

G.A.P. Cirrone
and the PRIMA collaboration

Laboratori Nazionali del Sud
Istituto Nazionale di Fisica Nucleare
CATANIA - I
1. Why the pCT?

2. The proton Computed Tomography: history, physical principles and status of the art

3. Design of the detector

4. Role of Monte Carlo simulation
WHY A pCT DEVICE?

Proton therapy is a growing radiation treatment technique (more 35 centers today)
WHY A pCT DEVICE?

MAIN ISSUES IN PROTON THERAPY QUALITY

- Patient positioning

- Dose planning

Actually TPS are based on the xCT images as input and this bring a sensible amount of imprecision.
WHY A pCT DEVICE?

DOSE PLANNING IN PROTON THERAPY

The stopping powers represent the main parameter for the dose calculation in a proton treatment planning.

In proton therapy they are indirectly derived measuring and converting, following some calibration curves, the attenuation coefficients $\mu$ derived from a conventional CT.

THE ERROR INTRINSIC IN THIS CONVERSION OWN TO THE NOT SIMPLE DEPENDENCE OF $\mu$ FROM $\eta_e$ AND Z OF THE MATERIAL IS THE PRINCIPAL FACTOR LEADING TO THE RANGE INDETERMINATION OF PROTON
WHY A pCT DEVICE?

Studyes by PSI researchers on phantom and animal models demonstrated that the used conversion

\[ \mu \leftrightarrow \text{stopping power} \]

and with actual calibration model produce an average indetermination on proton range of 3%

(up to 10 mm in the head)

Range uncertainty

- > 5 mm
- > 10 mm
- > 15 mm


Alderson Head Phantom
1. Why the pCT?

2. The proton Computed Tomography: history, physical principles and status of the art

3. Design of the detector

4. Role of Monte Carlo simulation
Already in his Nobel lecture, for the computed tomography realisation, Allan Cormack shown his studies carried out with Andreas Koehler and published on J. of Appl. Phys. nel 1963 e 1976, on the possibility of a protonComputed Tomography

<< Why use proton? First there is the question of dose…… There is an agreement with theoretical calculation that the dose required for proton scans is five to ten times less than for X-Ray scans for the same amount of informations.>>

<< Second: due to the different mechanism of interaction with matter one ought to see different things using different radiations…….>>
TWO MAIN REASONS STOPPED THE INTEREST OF PCT IN THE NEXT YEARS:

• A VERY SMALL NUMBER OF PROTON-THERAPY CENTERS

• THE IMPOSSIBILITY TO REACH SUFFICIENT LEVELS OF SPATIAL AND DENSITY RESOLUTION OWN THE INTRINSIC PRESENCE OF THE COULOMBIAN MULTIPLE SCATTERING
pCT: THE IDEA AND PRINCIPLES

METHOD EQUIVALENT TO THE X-RAYS IMAGING BUT HERE THE MAIN INFORMATION IS ENERGIES OF TRAVERSING PROTONS DESPITE ATTENUATION COEFFICIENTS OF PHOTONS

\[ \text{Energy detector} \]

\[ \text{Proton Computed Tomography} \]

\( p \)

\( E > 250 \text{ MeV} \)
Knowledge of entry and exit energy of a proton allow the estimation of the integrated (projected) relative electron density along a path $L$

The mean rate of energy loss is given by the Bethe-Bloch equation, written in a useful for pCT:

$$- \frac{dE}{dx}(r) = \eta_e(r)S[I(r), E(r)]$$

$$\int_L \eta_e(r) d\vec{r} = K \int_{E_{out}}^{E_{in}} \frac{dE}{S(E)}$$

Integrated electron density  
Inverse of Stopping Power

Like in xCT the pCT image reconstruction is the inversion of right integral for the unknown electron density distribution
pCT: THE IDEA AND PRINCIPLES

BUT

the exact path $L$ in the pCT is unknown due to Multiple Coulomb Scattering and only initial and final information can be measured for each proton.

MAIN TASK:

ESTIMATION OF PROTON PATH INSIDE MEDIUM

OR BETTER

A MEDIUM PATH

Geant4 simulation of 250 MeV protons in water

THE SINGLE TRACKING APPROACH
MEDIUM PROTON PATH ESTIMATION

1. Straight-line path
2. Most Likely Path (MLP): from Moliere MCS theory
3. Cubic Spline path
4. Monte Carlo path
1. Why the pCT?

2. The proton Computed Tomography: history, physical principles and status of the art

3. Design of the detector

4. Role of Monte Carlo simulation
All the studies and prototypes developed in the last years are based on the principle of follow each single proton traversing the medium to investigate

The “single tracking” approach should permit to improve the spatial resolution up to 1 mm or less
Single tracking

Acquisition rate up to 1 MHz

Detector: 2 orthogonal microstrip; 200 um pitch x 256 strips; about 5x5 cm of active area

Trigger from the calorimeter
## Requirements for a pCT device

<table>
<thead>
<tr>
<th>Category</th>
<th>Parameter</th>
<th>Desired Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proton source</td>
<td>Energy</td>
<td>( \approx 200 \text{ MeV (head)} )</td>
</tr>
<tr>
<td></td>
<td></td>
<td>( \approx 250 \text{ MeV (trunk)} )</td>
</tr>
<tr>
<td></td>
<td>Energy spread</td>
<td>( \approx 0.1% )</td>
</tr>
<tr>
<td></td>
<td>Beam intensity</td>
<td>( 10^3 - 10^6 \text{ protons/sec} )</td>
</tr>
<tr>
<td>Accuracy</td>
<td>Spatial resolution</td>
<td>&lt; 1 mm</td>
</tr>
<tr>
<td></td>
<td>Electron density resolution</td>
<td>&lt; 1%</td>
</tr>
<tr>
<td>Time Efficiency</td>
<td>Installation time</td>
<td>&lt; 10 min</td>
</tr>
<tr>
<td></td>
<td>Data acquisition time</td>
<td>&lt; 5 min</td>
</tr>
<tr>
<td></td>
<td>Reconstruction time</td>
<td>&lt; 15 min (treatment planning)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>&lt; 5 min (dose verification)</td>
</tr>
<tr>
<td>Reliability</td>
<td>Detector radiation hardness</td>
<td>&gt; 1000 Gy</td>
</tr>
<tr>
<td></td>
<td>Measurement stability</td>
<td>&lt; 1%</td>
</tr>
<tr>
<td>Safety</td>
<td>Maximum dose per scan</td>
<td>&lt; 5 cGy</td>
</tr>
<tr>
<td></td>
<td>Minimum distance to patient</td>
<td>10 cm</td>
</tr>
<tr>
<td></td>
<td>surface</td>
<td></td>
</tr>
</tbody>
</table>
1. Why the pCT?

2. The proton Computed Tomography: history, physical principles and status of the art

3. Design of the detector

4. Role of Monte Carlo simulation
THE ROLE OF MONTE CARLO

1. Test the estimation of the proton path
2. Evaluate of image quality
3. Evaluate the released dose (as function of image quality!)
4. Evaluate the different reconstruction algorithms

OUR COMPUTATIONAL TOOL

• GEANT4 MC toolkit:
  • Electromagnetic processes
  • Elastic nuclear scattering
  • Inelastic nuclear scattering
First tests of the Williams analytical approach to MLPs
G4 vs Experiment

MLPs for three different exit positions and angles

- GEANT4 simulation
- Experiment (April 2005 beam run)

- 0.8 mm, 7 mrad
- 2 mm, 15 mrad
- 4 mm, 35 mrad
Object is ideally divided in channel and only protons do not exceed the bin AT ANY POINT are considered. Its path can be approximated to a straight line and FBP is applicable.
A different possibility is consider protons entering and exiting in the same channel but not limit their paths inside it (Path 2). Eventually a constraint on exit angle can be introduced.

This permit to increase the number of protons for image reconstruction decreasing the total dose.
THE ROLE OF MONTE CARLO

200 MeV, 179 projections at 1°, 5M Histories, 20 cm circular phantom

Image relative to path1

3.3 l/cm

Profile lungo φ ~ 1.500
200 MeV, 179 projections at 1°, 250K Histories, 20 cm circular phantom

Maximum exit angle: 1°
THE ROLE OF MONTE CARLO

<table>
<thead>
<tr>
<th>( N_p \times 10^6 )</th>
<th>2.5</th>
<th>5</th>
<th>7.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dose (cGy)</td>
<td>15.5</td>
<td>31.08</td>
<td>46.62</td>
</tr>
<tr>
<td>( R_A (l/cm) )</td>
<td>3.3</td>
<td>3.3</td>
<td>3.3</td>
</tr>
<tr>
<td>( R_B (\Delta \rho/\rho_{H2O}) )</td>
<td>4%</td>
<td>2%</td>
<td>2%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dose (cGy)</th>
<th>5.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>( R_A (l/cm) )</td>
<td>2.5</td>
</tr>
<tr>
<td>( R_B )</td>
<td>4.5%</td>
</tr>
</tbody>
</table>


3-4 l/cm
THE ROLE OF MONTE CARLO

Dose estimation: calculation of CTDI

Ionisation chamber

Dose versus number of histories
Patient positioning

Improvement of input information of TPS and, consequently, improvement in dose control

Lower dose level as respect the conventional xCT

Good density resolution and very small dose levels

Not so good spatial resolution $\rightarrow$ improvement of path estimation and of reconstruction algorithms (ART)
ISTITUTION INVOLVED IN THE pCT

- Reinhard Shulte group at the Loma Linda University Medical Center

- Eros Pedroni group at Paul Sherrer Institute (actually they stopped the program)

- The Italian group author of the work I am presenting:
  - Laboratori Nazionali del Sud – INFN, Catania
  - Physics Department e INFN Section, Catania
  - Clinic Phisiophatology Department, Florence University
  - Energetic Department, Florence University

G.A.P. Cirrone, cirrone@lns.infn.it,
Laboratori Nazionali del Sud  CATANIA
Thank you for your attention
Si richiede una accuratezza della conoscenza della densità elettronica in ogni voxel minore o uguale all’1%.

GEANT4 studies:

R. Shulte et al.

Density resolution of proton computed tomography

Med. Phys. 32 (4), April 2005

PER ENERGIE OPPORTUNE E’ POSSIBILE OTTENERE RISOLUZIONI IN DENSITÀ EQUIVALENTI ALLA X-CT MA CON UN RISPRMIO DI DOSE