

Institute of Electrical Engineering Slovak Academy of Sciences, Bratislava Slovak republic

Performance of semi-insulating GaAs-based radiation detectors: Role of key physical parameters of base material

F. Dubecký *IEE SAS, Bratislava, Slovakia*

V. Nečas IEEIT SIT, Bratislava, Slovakia

C. Ferrari *IMEM – C.N.R., Parma, Italy*

OUTLINE

> MOTIVATION

RADIATION DETECTOR CHARACTERISTICS

Key detector-grade material aspects

> APPLICATIONS

- Monolithic LEC SI GaAs strip line in edge-on configuration
- Line concept of SI GaAs chip
- First "quantum" X-ray images
- "Quantum" X-CT: preliminary

GaAs MATERIAL FOR RADIATION DETECTORS

- Key material characteristics
- Characteristics summary
- Performances of fabricated detectors

CONCLUSIONS

Motivation I: New applications of semiconductor monolithic array detectors in X- and gamma-ray detection

NEW DETECTOR APPLICATIONS

• BASIC KNOWLEDGE: Experiments in physics X-ray astronomy.... ¹¹⁵InP: Solar neutrino astrophysics

 MEDICINE Digital X-ray radiology (stomatology, mammography), XCT Positron emission tomography

 NONDESTRUCTIVE ON-LINE CONTROL Material defect and process control

•SECURITY

Contraband inspections: cargo control Detection of drugs and plastic explosives Cultural heritage's study

MONITORING

Environmental control and radioactive waste management Metrology (testing of radioactive sources, spectrometry...)

IMPROVEMENTS IN X-RAY DIGITAL RADIOLOGY USING SEMICONDUCTOR DETECTORS

• LOWER DOSE TO PATIENT

• MUCH BETTER RESOLUTION IN CONTRAST (more than 2 orders of magnitude)

• DETERMINATION OF THE OBJECT DENSITY (Dual X-ray or "colour" imaging technique)

• 3-D IMAGE POSSIBLE USING CT METHOD •NO POLUTION DUE TO CHEMICAL PROCESSING

(Necessary in the case of film application)

• SIMPLE AND SPACE SAVING STORAGE OF DIGITAL DATA

 ON-LINE PROCESS CONTROL & DIAGNOSTICS OTHERS...???

"COLOUR IMAGING" in digital radiography

A, B: Dual energy digital radiographs

8th International Workshop on Radiation Imaging Detectors July 2-6, Pisa, Italy

CH 1 20

Energy (keV)

ount

MOTIVATION II

SI GaAs MATERIAL PROPERTIES

- ✓ Radiation hard
- ✓ Low cost
- ✓ Fast
- Wide band gap allows operation at RT
- Highly developed technology processing
- ✓ Easily commercially available
- Bulk material no limitation in thickness
- ✓ HIGH QUALITY!!

LINE (2D) SCANNING TECHNIQUE IN RADIOGRAPHIC IMAGING

Quantum XCT

- ✓ Technical simplest imaging solution
- ✓ Lowest cost
- ✓ Useful for fast testing of detector applicability in X-ray imaging
- High quality of X-ray image (good scattered photons rejection)
- Useful in many industrial, medical and security applications
- ✓ Applicable in basic and space research

Key semiconductor material and detector characteristics

REQUIREMENTS TO SEMICONDUCTOR DETECTOR-GRADE MATERIAL

Z > 30; $E_G > 1.3$ eV, τ, ρ (RT), high v_d , μ_d

high homogeneity, low density of structural, space-charge and point defects, fast reaction

LOW COST

Important material aspect: Attenuation coefficient

 $A \sim Z^{4+5}$

SI GaAs X- and gamma ray line detector: New topology 2003

Type of developed line SI GaAs detector	Number of strips in line	Pitch, mm	Absorption length, mm	Chip dimensions, mm	Effective absorption volume of strip, mm ³	Maximal thickness of substrate base, mm
SAMO X	32 64 128	0,25 0,125/0,25* 0,125	2,5	16x3,5 16x3,5/32x3,5* 32x3,5	0,06 0,04/0,08 0,04	0,12 - 0,18
SAMO XS	32	5.9	1,25 2,5**	8x3,5	0,1 0,18	0,2-0,3

SI GaAs line X-ray detector chip mounted onto flexible PCB carrier: Original concept (top), final arrangement (down)

SI GaAs DETECTOR APPLICATIONS

SINGLE PHOTON COUNTING = QUANTUM X-RAY SCANNER QUANTUM X-CT: FIRST EXAMPLE

Portable digital X-ray scanner based on SI GaAs radiation detectors: *Final set-up consists of 480 channels line, position control and communication*

Photos of various selected test objects

"QUANTUM" X-ray digital images of test objects

Testing X-CT platform

GaAs detectors testing: *fluctuations in counting – FPN*

Requirements to SI GaAs detectors based on "detector grade" materials From the point of view statistical fluctuations: Poisson's limit: S/N = (n)^{1/2} Other goals: - production yield - stability in long-term operation

- high homogeneity

SI GaAs

Role of key physical parameters of base materials

GDMS analysis: SI GaAs materials

Element	Sample label											
	A1	В	C	D1	D2	E	F	G	Η	K	L	M*
В	190	303	51	1041	966	271	301	71	470	n/a	20	5600
Na	<1.5	<2	<1.7	4	<2	8	3	<2	4		<1.5	3
Mg	<2	<2	<2	<2	<2	4	<1.9	<1.9	5		<1.5	<2
Al	<1	3	<1	14	<1.4	13	3	2	3		<1	9
Si	<3	11	<3	142	4	212	5	20	11		<3	445
Р	<3	<3.5	4	11	<2.8	12	<3	12	20		<3	110
S	<3	21	9	7	12	25	10	10	102		<3.5	77
Cl	14	13	9	13	16	<25	12	4	13		7	11
Ti	<0.4	2	<0.4	3	<0.5	<0.5	1	<0.4	1		<0.4	<0.4
Cr	<1.2	<1.2	<1.2	<1	<1	<1	<1.2	<1.2	70		<0.9	<1.5
Fe	<0.4	1	<0.5	1.8	0.7	1.4	1.5	0.8	0.8		<0.4	8
Cu	<2.5	<3	<2.5	26	8	<3	<3	<2.5	<3		<2.5	<2.7
Total:	<447	<594	<312	<1515	<1258	<806	<576	<360	<953		<257	>6655
				•	•							

Following impurities were obtained in all samples under given detection limit: F<25, Li<6, Be<5, K<25, Ca<20, Mn<0.5, Ni<1.1, Zn<4, Ge<40, Se<13, Mo<1.8, Cd<0.5, In<100, Sn<4, Te<2, Sb<2, Pb<0.5, Bi<0.5. NOTICES: In the analysis there are not included C, N_2 , O_2 as the background contaminants in GDMS and host atoms, Ga and As.

*Content of other important impurities (ppb at.) in the sample M is following: F 35, Mn 5, and Te 32.

Detection performance: SI GaAs detectors

July 2-6, Pisa, Italy

High resolution DCT and LST: SI GaAs materials

Ma- terial	FWHM DD. cm ⁻²	DCT	PD, cm^{-3}	LST
B LEC	7.2 2x10 ⁴		n/a	
D1 VGF	6.2 4x10 ³		4.3x10 ⁷	

a) SI GaAs: LEC (B) and VGF (D1) grown materials.

Capacitance study: SI GaAs detectors

8E-8 USI GaAs 7E-8 T=420 K $(F \text{ cm}^{-2})$ 6E-8 2 f=130 Hz O MASPEC 5E-8 MITSUBISH ♦ MA-COM 4E-8 C/S △ WACKER 3E-8 2E-8 1E-8 0 3 8 Voltage (V)

Figure 3. Measured dependences of the capacitance per unit area on voltage of the back-to-back Schottky barrier structres in undoped semi-insulating GaAs from four different manufacturers measured at 420 K and frequency 130 Hz.

Figure 4. Calculated dependences of $S^2 C^{-2}$ on voltage of the back-to-back Schottky barrier structures in undoped semi-insulating GaAs from four different manufacturers measured at 420 K and frequency 130 Hz.

N/A

Basic electrical and material characteristics and detectors performances: SI GaAs materials SUMMARY

Sample	Growth	Doping,	EPD	Resistivity	Hall mobility	Detection performances (RT)			
label	Method	contamination	cm ⁻²	$\Omega cm(RT)$	cm^2/Vs (RT)	CCE, % HWHM, % P/V			
A1	LEC	Non	<6x10 ⁴	3.9x10 ⁶	7464 🔴	79	18.5	4.2	
В	LEC	Non, Ti	$<4x10^{4}$	1.15x10 [′]	7227 🔴	59	24	2.5	
С	LEC	Non	$<4x10^{4}$	2.44x10 [′]	6040	65	14	2.6	
D1	VGF	Non, Cu, Fe, Ti	<5x10 ³	8.8x10'	5400	28	35	2	
D2	VGF	Non, Cu, Fe	$<4x10^{3}$	4.63x10 ⁷	6203	43	21	2.5	
E	HP LEC	Non	<6x10 ⁵	2.95x10 [°]	6940 🔴	73	22.5	2.9	
F	LP LEC	Non	$<2x10^{5}$	1.06x10 ⁷	5816	72	21.6	2.6	
G	LEC	Non	$<8x10^{4}$	2.8x10 ⁸	5122 •	42 detected	no pł	otopeak	
Н	LEC	Cr	$<1x10^{5}$	1.2×10^8	5770 •	51	25	1.4	
K	LEC	Non	$<2x10^{5}$	9.65x10 ⁶	7517 • ??	57 detected	no pł	otopeak	
L	LEC	Non	$<6x10^{4}$	2.6×10^7	6915 🔴	72	12.5	3.8	
М	LEC	Non	<8x10 ⁵	1.4x10 ⁸	4830	32 detected	no pł	otopeak	

Tabe 1. Information about bulk SI GaAs wafers and detection performances to 122 keV γ-radiation.

EBIC: SI GaAs

Detector contact: 2 mm diameter Base thickness: 200 μm

I-V characteristic of SI GaAs detector with the Schottky barrier

?? Explanation of the second current saturation region observed at the reverse I-V characteristics

I-V characteristics of SI GaAs detectors with the Schottky barrier (2 mm diameter)

Fig. 1. Room-temperature I-V characteristics versus reverse bias voltage for SI LEC GaAs detectors at different acceptor dopant concentrations, N_a , as reported in Table 1.

Baldini, R., et al., NIM A 449 (2000) 268

Pulse-height spectra of ²⁴¹Am and ⁵⁷Co detected by "dedicated" SI GaAs PAD detector

B. Zaťko at al.: Nucl. Instr. Meth. A (2004)

SI GaAs detectors structure

July 2-6, Pisa, Italy

Optimization of the ohmic and blocking SI GaAs detector contacts

Conclusions

- Bulk SI GaAs: Radiation detector-grade material is available on the market!
- Key material characteristics: preferable VGF, low dislocation density
 - high chemical purity (GDMS)
 - RT Hall mobility > 6500 cm²/Vs
 - RT resistivity (0.8 3)e7 ohm cm
- Following material evaluation tools: X-ray topography, LST, PL, ...
- Detector evaluation tools: I-V, C-V, EBIC, pulse height spectra,...
- Detector electrodes: Must be optimized for required performance
- Schottky back-to-back electrode technology: Potential improvement must be investigated in more details!!
- PERSPECTIVE APPLICATIONS: Quantum X-RAY IMAGING, Quantum X-CT,...
- BASIC & SPACE RESEARCH: PLASMA DIAGNOSTIC IN NUCLEAR FUSSION

THANK YOU

FOR YOUR ATTENTION!!!