

Detectors for the European X-ray Free Electron LASER

Richard Farrow CCLRC UK IWORID-8

Detectors for XFEL

- The XFEL project
- Status.
- Science and the first set of imaging detectors.
- Beam monitoring and other detectors.
- Challenges.
- Questions.

FEL: Free electron LASER. An overview.

distance

Photon peak power in saturation ~ 10 GW

What does an FEL deliver that is special

- Very short pulse width ~100fs
- Very high flux ~kW
 - -100s uJ per pulse.
 - -Pulse rates of 10s MHz.
- High level of coherence.

FLASH (VUV FEL) at DESY

Objective: lasing at $\lambda \sim 6$ nm (2006-2007)Lasing at 32nm achieved in Jan 2005 Present status : Now lasing at 13nm! **User operation started on 5** exp.stations (Aug. 2005)

Linac-based X-ray Free-electron Lasers

European XFEL Project, Hamburg

Linear Coherent Light Source, SLAC, Stanford

Undulator and Beamline Layout

Distribution of the 5 beamlines, with 2 experimental stations each

Time Structure

Electron bunch trains (with up to 3000 bunches à 1 nC)

SASE Source characteristics

Parameter	Unit	SASE 1	SASE 2		SASE 3		
Electron energy	GeV	17.5	17.5	17.5	17.5	17.5	10.0**
Wavelength	nm	0.1	0.1	0.4	0.4	1.6	6.4
Photon energy	keV	12.4	12.4	3.1	3.1	0.8	0.2
Peak power	GW	20	20	80	80	130	135
Average power*	W	65	65	260	260	420	580
Photon beam size (FWHM)	μm	70	85	55	60	70	95
Photon beam divergence (FWHM)	µrad	1	0.84	3.4	3.4	11.4	27
Coherence time	fs	0.2	0.22	0.38	0.34	0.88	1.9
Spectral bandwidth	%	0.08	0.08	0.18	0.2	0.3	0.73
Pulse duration	fs	100	100	100	100	100	100
Photons per pulse	#	10 ¹²	10 ¹²	1.6 × 10 ¹³	1.6 × 10 ¹³	1.0× 10 ¹⁴	4.3 × 10 ¹⁴
Average flux	#/s	3.3 × 10 ¹⁶	3.3 × 10 ¹⁶	5.2 × 10 ¹⁷	5.2 × 10 ¹⁷	3.4 × 10 ¹⁸	1.4 × 10 ¹⁹
Peak brilliance	В	5.0 × 10 ³³	5.0 × 10 ³³	2.2 × 10 ³³	2.0 × 10 ³³	5.0 × 10 ³²	0.6 × 10 ³²
Average brilliance*	В	1.6 × 10 ²⁵	1.6 × 10 ²⁵	7.1 × 10 ²⁴	6.4 × 10 ²⁴	1.6 × 10 ²⁴	2.0 × 10 ²³
							

X-Ray Free-Electron Laser

SR (Spontaneous) characteristics

Parameter			
photon energy [keV]	20	50	200
peak power [MW]	15	126	81
average power [W]	59	504	324
photon beam size (FWHM) [µm]	84	83	83
photon beam divergence (FWHM) [µrad]	3.5	2.9	2.5
pulse duration (FWHM) [fs]	100	100	100
number photon per pulse [x10^8]	3.3	2.8	1.1
average flux of photons [x10^13/s/0.1%]	1.3	1.1	4.4
peak brillance [x10^28]*	1.4	2.9	1.4
average brillance [10^19]*	5.8	1.2	56

Timescales

- Completion of preparation : 2006/07.
- Construction phase starts 2007.
- Initial construction complete ~2012/13.
- Operation starts ~2014.

- LCLS : Starts 2009/10. (120Hz)
- SCSS (Japan) : Starts after 2010. (60Hz)

Instruments

- New area of research
- New science areas and techniques.
- Vast array of new instrumentation required, for example...
 - -Optics.
 - -Sample handling.
 - -Detectors.

Detectors for XFEL

- Approach
 - 1. Define initial flagship techniques
 - 2. Define initial detector requirements.
 - 3. Develop and agree formal specifications.
 - 4. Initiate construction ASAP.
 - 5. Identify key areas of necessary R&D.
 - 6. Identify other key detection areas.
 - 7. Execute 'parallel' development programme.
- UK(CCLRC) and XFEL presently working together on 2-3 and 5-6.

Science

- 5 flagship science techniques.
 - Pump probe Non-crystalline diffraction.
 - Pump probe diffraction.
 - Coherent imaging.
 - Single particle imaging.
 - X-ray photcorrelation spectroscopy.
- Overview of science.
- Review of initial imaging detector spec's.

Area/Experiment 1: Pump-Probe on noncrystalline material.

Area/Experiment 1: Pump-Probe on noncrystalline material (Wulff)

Area/Experiment 1: Pump-Probe on noncrystalline material (Wulff)

Detector size or angular range:

$$Q_{max} = 4\pi \sin\theta/\lambda = 10 \text{ Å}^{-1}; \lambda = 1 \text{ Å} \rightarrow 2\theta_{max} = +/-100 \text{ degrees}$$

Pixel size or angular resolution:

5-10 oscillations; → 2x safety margin=20 oscillations max
→10 sampling points per oscillation → 200 pixels
→500 pixels for +/- 100 degrees

Area/Experiment 1: Pump-Probe on non-crystalline material (Wulff)

	Detector I: Pump Probe, Non-Crystalline		
XFEL radiation source	SASE-1 (and U1)		
Photon energy range	8 – 12	keV	
Energy resolution	None	eV	
Quantum efficiency	>0.8		
Radiation hardness	10 ¹⁶	12 keV X-ray ph/pixel	
Total angular coverage	200	degrees	
Angular resolution or pixel size	7	mrad	
Number of pixels	500 x 500		
Acceptable tiling constraints	<20% dead area, no circular		
	features		
Maximum local rate	5 x 10 ⁴	ph/pixel/100fs pulse	
Maximum global rate	3 x10 ⁷	ph/100fs pulse	
Timing	minimum 10	Hz (but see below)	
Flat field response	1%		
Dark current	<0.01 eq X-ray photon	per pixel per exposure	
Read-out noise	<0.01 eq X-ray photon	per pixel	
Linearity	1%		
Point spread function	<1 pixel FWHM	1 pixel = 7 mrad!	
Image latency	< 1/1000	in subsequent image	
Operating environment	Ambient		
Vacuum compatibility	No		
Maintenance	See below.		
Other requirements	Central hole		

Area/Experiment 2: Pump-Probe on crystalline material.

Area/Experiment 2: Pump-Probe on crystalline material

Area/Experiment 2: Pump-Probe on crystalline material (Wulff)

Detector size or angular range:

$$2dsin\theta = \lambda = 1 \text{ Å}; d=1\text{ Å} \rightarrow 2\theta_{max} = +/-60 \text{ degrees}$$

1000 diffraction spots; 300 μ m FH1%M \rightarrow 300 mm

Pixel size or angular resolution:

1000 diffraction spots, \rightarrow 3000 pixels of 100 μ m

	Detector II:			
	Pump Probe Crystalline			
XFEL radiation source	SASE-1 (and/or U1)			
Photon energy range	12	KeV		
Energy resolution	No	eV		
Quantum efficiency	>0.8			
Radiation hardness	10 ¹⁶	12 keV X-ray ph/pixel		
Total angular coverage	120	degrees		
Angular resolution or pixel	100	μm		
size				
Number of pixels	3000 x 3000			
Acceptable tiling constraints	<10% dead area			
Maximum local rate	3x10 ⁶ (10 ³)	ph/pixel/100fs pulse		
Maximum global rate	10 ⁷ (10 ⁵)	ph/s		
Timing	10	Hz		
Flat field response	1%			
Dark current	<0.01 eq X-ray photon	per pixel per exposure		
Read-out noise	<0.01 eq X-ray photon	per pixel		
<u>Linearity</u>	1%			
Point spread function	100 um (300 um)	FWHM (FW1%M)		
Image latency	10 ⁻⁶	Subsequent images		
Operating environment	ambient			
Vacuum compatibility	No			
Maintenance	See below			
Other requirements	Central hole			

CCLRC

Image reconstructed from an ultrafast FEL

L

diffraction pattern

Area/Experiment 3/4: Single Particle Imaging (Hajdu & Robinson)

Detector size or angular range:

Atomic resolution (=1 Å); λ = 1Å \rightarrow 2 θ_{max} = +/- 60 degrees

Pixel size or angular resolution:

1000 Å particle (Virus) \rightarrow 2000 points; +/- 20 Sample with 1Å resolution \rightarrow 4000 points

	Detec	tor III:	Detector IV:		
	Coherent Diffraction Imaging		Single Particle Imaging		
XFEL radiation	SASE-2 SASE-3		SASE - 1		
source					
Photon energy range	0.8 – 3.1	KeV	12.4	KeV	
Energy resolution	No	eV	No	eV	
Quantum efficiency	>0.8		>0.8		
Radiation hardness	2 10 ¹⁴	12 keV X-ray ph/pixel	10 ¹⁶	12 keV X-ray ph/pixel	
<u>Total angular</u> <u>coverage</u>	120	degrees	120	degrees	
Angular resolution or pixel size	0.1	mrad	0.5	mrad	
Number of pixels	20k x 20k (!)		4000 x 4000		
Acceptable tiling constraints	See text		Minimal tiling required		
Maximum local rate	104	ph/pixel/100fs pulse	104	ph/pixel/100fs pulse	
Maximum global rate	107	ph/s	107	ph/s	
Timing	Up to 5MHz		10	Hz	
Flat field response	1%		1%		
Dark current	<0.01 eq photon	Per pixel per frame	<0.01 eq X-ray photon	Per pixel per exposure	
Read-out noise	<0.01 eq photon	Per pixel	<0.01 eq X-ray photon	Per pixel	
<u>Linearity</u>	1%		1%		
Point spread function	<1 pixel	FWHM	<1 pixel FWHM		
Image latency	<1/15000	In subsequent image	<1/1000		
Operating	Ambient		ambient		
environment					
Vacuum	Yes		yes		
<u>compatibility</u>					
				X-Ray Free-Electron Laser	

Area/Experiment 5: X-ray Photon Correlation Spectroscopy (Grübel)

Area/Experiment 5: X-ray Photon Correlation Spectroscopy (Grübel)

Pixel Size or Angular Resolution:

pixel size \leq speckle-size = $(\lambda/d) \cdot L = (1 \text{ Å}/25 \ \mu\text{m} = 4 \ \mu\text{rad}) \times 20 \ \text{m} = 80 \ \mu\text{m}$ speckle-size = beamsize \rightarrow pixelsize: $(\lambda \cdot L)^{1/2} = 45 \ \mu\text{m} (1 \ \text{Å}, 20 \text{m})$

 $PLD = 2W\sin^2(\theta) + D\sin(2\theta)$ CLRC

Area/Experiment 5: X-ray Photon Correlation Spectroscopy (Grübel)

Detector Size or Angular Range:

$PLD = 2W \sin^2(\theta) + D \sin(2\theta) < LCL = \xi_I = \frac{\lambda^2}{\Delta \lambda}$

No Monochromator: With Monochromator: $\Delta \lambda = 10^{-3} \lambda \Rightarrow \theta_{max} = 0.10 \text{ degrees} \Rightarrow 1 \text{K pixels}$ $\Delta \lambda = 2. \ 10^{-4} \lambda \Rightarrow \theta_{max} = 0.5 \text{ degrees} \Rightarrow 5 \text{K pixels}$

CCLRC Area/Experiment 5: X-ray Photon Correlation Spectroscopy (Grübel)

	Detector V:		
	Photon Correlation Spectroscopy		
XFEL radiation source	SASE-1 (and SASE-3)		
Photon energy range	8 – 12 (0.25-3.1)	keV	
Energy resolution	None	eV	
Quantum efficiency	>0.8		
Radiation hardness	2 1014	12 keV X-ray ph/pixel	
Total angular coverage	0.2 (1.2)	degrees	
Angular resolution or pixel size	4	μrad	
Number of pixels	1000 x 1000 (5000 x 5000)		
Acceptable tiling constraints	<20% dead area		
Maximum local rate	10 ³	ph/pixel/100fs pulse	
Maximum global rate	106?	ph/100fs pulse	
Timing	5 106	Hz (but see below)	
Flat field response	1%		
Dark current	<0.01 eq X-ray photon	per pixel per exposure	
Read-out noise	<0.01 eq X-ray photon	per pixel	
Linearity	1%		
Point spread function	<1 pixel FWHM	1 pixel = 4μ rad	
Image latency	< 1/1000	in subsequent image	
Operating environment	Ambient		
Vacuum compatibility	No		
Maintenance	See below.		
Other requirements	Central hole		

Timeline for phase 1 detectors

• Timeline

- Agree requirements.
- Develop firm specifications.
- Deadline to submit Eol's: 2006
- Evaluation of Eol's:
- Decision by XFEL PT:

30 September

- 15 October 2006
- 31 October 2006
- Invitations to submit full proposals: 15 November 2006
- Deadline to submit full proposals:
- Evaluation of proposals:
- Start of projects:

15 February 200715 March 20071 May 2007

What to do!

• Contact Heinz Graafsma for Expression of Interest documentation.

Other XFEL detector areas

- Photon beam monitoring.
 - -Gas detectors / Diamond / ??
 - -Position, energy, size, intensity etc.
- Photon absorption spectroscopy. *Od/1d.*
- Temporal measurements. Streak cameras.
- Particle (electron and ion) imaging / timing. All require specification and development. Subjects of future EXFEL calls.

Spectroscopy on XFEL?

XSTRIP

SR Detectors – XSTRIP

DEXAFS at 50us integration time. Also scans taken with single bunch of electrons.

XSTRIP : XH : One solution.

XSTRIP: XH

XSTRIP : XH electronics

Challenges : Detector R&D

- Materials :
 - Silicon / gas / other.
 - Speed <100ns faster in some cases.
 - Radiation damage (& electronics). 10^{16}
 - 'Field' saturation. $3x10^6 ph = 1uC pulse!$.
 - Manipulation. Central hole. Tiling.
 - Interconnection.
 - Windows. Vacuum?

Beam monitoring !!

Challenges : Detector R&D

- Front end readout :
 - Integrating only?.
 - Dynamic range. 10⁷ ph.
 - Speed. 10Hz....but 20k x 20k!!
 - Data volume / transmission / selectivity.
 - Robust (industrial environment).
- Back end data acquisition.
 - Data volume and storage. Gb s⁻¹
 - Data analysis.
 - Reliability.
 - Lifetime.

Challenges : Detector R&D.

- Experimental integration.
 - Pump probe. ~fs.
 - Sample handling and manipulation.
- Other challenges.
 - Other experimental requirements : time / energy / phase
 - Detector cost.
 - Limited number of projects/detectors.
 - Multiple configurations.
 - Maintenance and support.
 - Known, stable, characterised performance.

Conclusions

- European XFEL will deliver extremely interesting and challenging science..but will require very high quality detectors.
- First phase of detectors are proposed NOW and partners/suppliers are being sought.
- Further developments and calls for later phase detectors will also occur.
- R&D activities are already underway in some areas. These will continue and expand.

Acknowledgements

Thanks to...

- Heinz Graafsma / Massimo Altarelli. DESY.
- Michael Wulff / Janos Hajdu / Ian Robinson / Gerhard Gruebel : Science.
- Masaharu Nomura / Yasuhiro Inada. PF AR.
- John Evans / Trevor Rayment / Cyril Ponchut.
- Detector teams at DL and RAL.
- You for your attention!!

Questions

Possible solutions?

- Hybrid pixel detectors?
 - -LAD.
 - -Medipix.
 - -Pilatus.
- CMOS sensor detectors?
 - -PAD.
 - -Startracker.
- Others Gas counters?

