# Processing and measurements of GaAs pixel detectors



#### M. Fiederle A. Fauler, A. Zwerger

Freiburger Materialforschungszentrun SG Material Characterization & Detector Technology

Albert-Ludwigs-Universität Freiburg www.fmf.uni-freiburg.de

#### Outline

- Processing of pixel detectors
- GaAs for detector applications (revival)
- Measurements with GaAs Medipix assemblies
- Comparison with Silicon assembly
- Summary and outlook







# **Medipix Activities Freiburg**



# **Processing of pixel detectors (FMF)**

- pixels sizes down to 55 µm (pixel Medipix2)
- 4000 65.000 pixels
- Low temperature processing (< 200 °C)
- Polymere passivation (BCB)
- Low force Flip-Chip-Bonding
- Processing of single detectors or wafers









Freiburger Materialforschungszentrum

#### **Detector assembly after flip-chip process**







Freiburger Materialforschungszentrum

## CdTe – pixel detector Medipix1







Freiburger Materialforschungszentrum

# Medipix 2: Processing features

Pixel size on the detector side can be increased  $(110x110\mu m^2, 165x165\mu m^2, ...)$  bonding only 1 out of 4 / 9 /... pixels on the MP2 chip

55x55µm<sup>2</sup> every MP2 pixel used



110x110µm<sup>2</sup> every 4th MP2 pixel used







Freiburger Materialforschungszentrum

#### GaAs pixel detectors (LEC material from commercial supplier)



# **Properties of GaAs radiation detectors**

- Semi-insulating material
- Available technology
- Good absorption (< 50 keV)
- Wafer sizes available up to 6 inch
- 55 µm resolution possible (small effect of fluorescence)

Strong development over the last 5 years:

• Reduction of defect concentration (EL2)

Performance is depending on bulk properties







# GaAs 1x1 assembly processed and bonded at FMF





Freiburger Materialforschungszentrum

#### Detector bias at 270V I = $50\mu$ A

#### Am-source





Freiburger Materialforschungszentrum

#### Detector bias at 275V I = 400µA

#### Am-source



#### Detector bias at 275V I = $50\mu$ A

#### x-ray tube



ALBERT-LUDWIGS-UNIVERSITÄT FREIBURG



Freiburger Materialforschungszentrum

#### Detector bias at 280V I = 300µA

#### x-ray tube







Freiburger Materialforschungszentrum High leakage current

### **Cell structure at low bias**







# GaAs 55x55µm<sup>2</sup> detector



ALBERT-LUDWIGS-UNIVERSITÄT FREIBURG

Freiburger Materialforschungszentrum

# GaAs 110x110µm<sup>2</sup> detector



#### Flatfield acquisition (W 60kV, 1.5mm Al)

#### without correction, only th.adj.mask is activated



270V





#### Flatfield acquisition (W 60kV, 1.5mm Al)

without correction, only th.adj.mask is activated



190V



Freiburger Materialforschungszentrum

#### X-ray images of TTL-chips



ALBERT-LUDWIGS-UNIVERSITÄT FREIBURG



Freiburger Materialforschungszentrum

### **MTF comparison GaAs**



FMF

**IWoRID 2006 Pisa** 





#### Energy calibration for 300µm GaAs assembly



#### Comparison of integrated counts



same acqu.time source:  $^{241}$ Am 59.5keV Tb K<sub>a</sub> 44.2keV

--: 300µm GaAs

-- : 700µm Si



Advantages of "pixel binning":

SNR will be increased

 if unused pixels are switched off, THL can be set to lower values

 pitch can be adapted to application + material and/or thickness

- charge sharing can be reduced

Disadvantages:

 one pixel has to compensate 4/9 times higher leakage current

lower spatial resolution



- counters are "full" very quickly  $\rightarrow$  more frequent readout

Freiburger Materialforschungszentrum

# Conclusion

- Flip-chip-process successful for GaAs
- 55µm and 110 µm pixel detectors
- MTF and absorption (for higher E) are at the theoretical limit
- material not fully depleted
  - processing of 250 µm wafers
  - higher bias (HV passivation)

Research on material properties:

- Comparison of LEC and VGF material
- Processing of QUAD





## Thanks for your attention!





Freiburger Materialforschungszentrum