

A totally personal and subjective summary of IWORID-8

Heinz Graafsma

Some statistics

9

- Total # participants: 105
- Italian participants: 26
- Non European partic.:
- Number of talks:
- Number of slides:
- Total size of ppt files:
- Number of posters: 25

40 1037 391 Mb (100Mb/day)

Some observations:

• Very well prepared presentations!

- Increasing focus on applications!
- Increasingly diverse applications:
 - From Terra-Hertz to gamma rays
 - From photons to neutrons
 - From medical to space science
- What was new in applications?

Passive terahertz imaging with superconducting antenna-coupled microbolometers

Arttu Luukanen MilliLab/VTT Technical Research Centre of Finland arttu.luukanen@vtt.fi www.vtt.fi/millilab

Leif Grönberg, VTT Panu Helistö, VTT Felix Maibaum, VTT/PTB Heikki Seppä, VTT Jari S. Penttilä, VTT Hannu Sipola, VTT Tekes, the Finnish Funding Agency for Technology and Innovation (Decision #40384/05) Rapiscan Systems Oxford Instruments Erich Grossman, NIST, Boulder, CO (grossman@boulder.nist.gov) Charles Dietlein, UC Boulder,CO Zoya Popovic, UC Boulder, CO NIST/Office of Law Enforcement Standards UC Boulder/ NSF, award #0501578

Superconducting Antenna-coupled microbolometers for passive THz imaging

- Broadband (0.1 1 THz lithographic antenna) on Si
- Bolometer material
 - Nb for 1st generation devices
 - NbN for 2nd generation
- Similar to a Transition Edge Sensor; but with a large temperature gradient
- V-bias + T-gradient→ phase separation
- Bias + RF dissipation (DC) takes place in the N state region, some RF dissipated also in the superconducting region (gap varies across the bridge)
- Bias power modulates the size of the hot-spot → modulation of R → modulation of current through the bridge
- Electrical measurements in 2003; NEP_e=14 fW/Hz^{1/2}
- Extremely simple to fabricate
- Speed requirement? Real time scanned imagery: 30 Hz
 × 200 scan positions ~ 6 kHz

A. Luukanen, J.P. Pekola, Applied Physics Letters, Volume 82, Issue 22, pp. 3970-3972 (2003). Arttu Luukanen, Robert H. Hadfield, Aaron J. Miller, Erich N. Grossman, Proc. SPIE Vol. 5411, p. 121-126, Terahertz for Military and Security Applications II; R. Jennifer Hwu, Dwight L. Woolard; Eds. (2004)

36x1x0.05 (μm)³ suspended Nb Bridge

IWORID-8, Pisa 2.7.2006

arttu.luukanen@vtt.fi

Examples of acquired images (single pixel, Nb device)

- General parameters:
 - Distance: 0.8–2 m
 - Spatial pixel size: ~ 4-8 mm square
 - Pixel integration time: 10 ms
 - Calibration: hot water & background average area
 - Clothing variations: cotton, polyester, windblocker jacket, thermal sweater
 - Concealed objects:
 - RAM (AN-72)
 - metal gun-
 - ZrO₂ knife
- Measured fluctuation in smooth background of images
 - 200-500 mK depending on area and image
- Important measured temperature contrasts
 - 8K: concealed threat objects
 - 5K: zippers, thick clothing overlap
 - 0.5-1.5K: wrinkles/folds in clothes, i.e., clutter
- Observed spatial resolution
 - ~ 1 cm features plainly resolved

arttu.luukanen@vtt.fi

Detectors for the European X-ray Free Electron LASER

Richard Farrow CCLRC UK IWORID-8

Linac-based X-ray Free-electron Lasers

European XFEL Project, Hamburg

Linear Coherent Light Source, SLAC, Stanford

	Detector II:	
	Pump Probe Crystalline	
XFEL radiation source	SASE-1 (and/or U1)	
Photon energy range	12	KeV
Energy resolution	No	eV
Quantum efficiency	>0.8	
Radiation hardness	10 ¹⁶	12 keV X-ray ph/pixel
Total angular coverage	120	degrees
Angular resolution or pixel	100	μm
size		
Number of pixels	3000 x 3000	
Acceptable tiling constraints	<10% dead area	
Maximum local rate	3x10 ⁶ (10 ³)	ph/pixel/100fs pulse
Maximum global rate	10 ⁷ (10 ⁵)	ph/100fs pulse
Timing	10	Hz
Flat field response	1%	
Dark current	<0.01 eq X-ray photon	per pixel per exposure
Read-out noise	<0.01 eq X-ray photon	per pixel
Linearity	1%	
Point spread function	100 um (300 um)	FWHM (FW1%M)
Image latency	1 0 ⁻⁶	Subsequent images
Operating environment	ambient	
Vacuum compatibility	No	
Maintenance	See below	
Other requirements	Central hole	

Imaging and Spectroscopy with Modern Silicon Radiation Detectors

<u>Heike Soltau</u>, Robert Hartmann, Peter Holl, Peter Lechner, Andreas Liebel, Adrian Niculae, Rouven Eckhard, Klaus Heinzinger

Lothar Strüder, Gerhard Lutz, Florian Schopper, Johannes Treis, Stefan Wölfl

Andrea Castoldi, Carlo Fiorini, Chiara Guazzoni, Antonio Longoni

PNSensor GmbH Munich, Germany

Max-Planck-Institute for ExtraterrestrialPhysics Garching, Germany

Politecnico di Milano Milano, Italy INFN, Italy

IWORID 2006 in Pisa (Italy)

PNSens•r

The Controlled Drift Detector*(CDD)

Device proposal for the XFEL

Gas Pixel Detectors

Ronaldo Bellazzini INFN - Pisa

> 8th International Workshop on Radiation Imaging Detectors (IWORID-8) Pisa 2-6/july 2006

Polarimetry: The Missing Piece of the Puzzle

Imaging: Chandra

Timing: RXTE

Spectroscopy: AstroE2, Constellation-X, Chandra

Polarimetry: ?

Track morphology and angle reconstruction

.0 2

04

X coordinate (mm)

Event Number:	101
Number of Clusters:	1
Cluster Size (largest):	130
Pulse Height:	12208.2
Signal to Noise:	320.1
Baricenter:	2.50 -4.31
Conversion Point:	2.38 -4.01
Second Mom Max:	0.0459
Second Mom Min:	0.0134
Shape (ratio of moments):	3.42
Third Mom Max:	-2.6e-03
Phi (iteration 1)	-0.9540
Phi (iteration 2)	-1.8518

Reconstructed Baricenter
 Reconstructed Impact Pt.

Event Number:	25
Number of Clusters:	1
Cluster Size (largest):	121
Pu'^e Height:	10625.1
Signal to Noise:	278.9
Baricenter:	-0.15 2.95
Conversion Point:	-0.63 2.94
Second Mom Max:	0.0475
Second Mom Min:	0.0210
Shape (ratio of moments):	2.26
Third Mom Max:	-1.1e-02
Phi (iteration 1)	0.1949
Phi (iteration 2)	-0.2401

凸 Reconstructed Baricenter Reconstructed Impact Pt.

What about technologies?

- No new Chips?
- There are more chips than Medipix! (see Bellazzini)
- CMOS MAPs impressive.

Recent Development on CMOS Monolithic Active Pixel Sensors

Tracking detector applications

Giuliana Rizzo Università degli Studi di Pisa & INFN Pisa

8th International Workshop on

Radiation Imaging Detectors

Pisa, July 2-6 2006

G.Rizzo – IWORID-8 – Pisa, July 2-6 2006

Triple well CMOS MAPS (I)

SLIM5-Collaboration

- Use of commercial triple-well CMOS process proposed to address some limitations of conventional MAPS
 - improve readout speed with in-pixel signal processing
 - improve single pixel signal with a larger collecting electrode

In triple-well processes a deep n-well is used to provide Nchannel MOSFETs with better insulation from digital signals

This feature exploited for a new approach in the design of CMOS pixels:

- The deep n-well can be used as the collecting electrode
- A full signal processing circuit can be implemented at the pixel level overlaying NMOS transistors on the collecting electrode area

Triple Well MAPS Results

- First prototype chip, with single pixels, realized in 0.13 µm triple well CMOS process (STMicrolectronics)
- Very encouraging results:
 - Proof of principle
 - S/N = 10 (90 Sr β source)
 - Single pixel signal ~1250e-(only 300 e- in conventional MAPS!)
 - High pixel noise ENC = 125 e-(due to underestimated deep nwell capacitance)

•

⁹⁰Sr electrons

<u>Second prototype</u> under test:

- Pixel matrix (8x8, 50x50 μm^2) with simple sequential readout tested up to 30 MHz.

Noise only

- Pixels with varying electrode size (900-2000 μ m²)
- Improved front-end: pixel noise ENC = 50 e-

 \rightarrow M.I.P. Expected S/N ~ 25

Problems: threshold dispersion measured ~300 e-, ground line bouncing in digital transitions.

G.Rizzo - IWORID-8 - Pisa, July 2-6 2006

What about technologies?

- No new Chips?
- There are more chips than Medipix! (see Bellazzini)
- CMOS MAPs impressive.
- Steady progress in materials; comeback for GaAs?
- Post processing of chips gives many possibilities.

University of Twente

Wafer-level CMOS post-processing Jurriaan Schmitz

Tl's micromirrors

IWORID J. Schmitz page 21

Integrated microchannel plates

Principle: J. Vallerga et al., IWORID 2004

Wafer-level manufacturing: Porous alumina?

J. Melai et al., IWORID 2006

IWORID J. Schmitz page 22

Theory?

- Noise performance; mixed activity on chip
- Sensor simulation
- ASIC simulation
- Image processing (tomographic reconstructions)

Power Distribution and Substrate Noise Coupling Investigations on the Behavioral Level for Photon Counting Imaging Readout Circuits

Jan Lundgren, Suliman Abdalla, Mattias O'Nils, Bengt Oelmann

BeNoC model description

Simulation examples With power distribution noise coupling

ELECTRONICS Design Division Noise voltage on <u>analog</u> blocks in a 3x3 pixel structure.

Jan Lundgren

Conclusion

- IWORID-8 was a great success
 - BUT WHY????

Enthusiastic speakers:

Great audience

An attentive audience

Deep thoughts

A good atmosphere

Conclusion

- IWORID-8 was a great success
 - BUT WHY????

• Because:

Local organizing committee did a marvelous jobs: THANKS.

First announcement: The 9th iWoRiD in Erlangen 22 – 26 July 2007

Local Organizing Committee

9th International Workshop on Radiation Imaging Detectors

langen, Germany, 22-26 July 200

www.IWORID2007.de

Scientific Committee