Investigation of Charge Carrier Transport and Charge Sharing in X-Ray Semiconductor Pixel Detectors such as Medipix2

Alexander Korn, Markus Firsching, Martin Hoheisel and Gisela Anton
09.07.06
Motivation

Medipix2 Simulation

Geometry
Spectra
Settings
Experiment
Threshold scans
Image
Other information
Charge Sharing / Spreading

- Diffusion
- Spatial spreading
- Energy distribution
- Efficiency
Diffusion

\[\sigma^2 = 2Dl \]
\[D = \frac{k_BT}{e\mu} \]
and
\[l = \int_0^z dz \frac{1}{\mu(E)E(z)} \]
Simulation of interaction
Gives location and energy deposition of interactions inside the sensor layer.

(x,y,z,E) of interaction

Simulation of diffusion
Each e-h pair is Gaussian distributed with \(s = s(z) \) and projected in x,y plane.

(x,y) single charge 3.6 eV

Simulation of electronics
The energy in a spatial interval (Pixel) is also blurred Gaussian (electronic noise). The resulting energy per pixel is discriminated by the threshold and counted.
Experimental setup

- Bragg reflections as monoenergetic sources
- Threshold scans with Medipix2.

Tungsten Kα1 and Kα2 line

Diagram:
- Tungsten tube
- Silicon crystal
- Detector
25.5 keV monoenergetic
59.3 keV monoenergetic
Backscattering

Silicon sensor

Bump bonds, Sn-Pb alloy

Silver-filled glue

γ

Spatial spreading

Energy distribution

Efficiency
Implementation of the assembly

- Sensor, 700 μm silicon.
- Bump bonds, Sn/Pb alloy, cubics 25 μm.
- ASIC, 700 μm Si layer.
- Silver-filled glue 7 μm.

But: Simulation time up to a factor of 100.
59.3 keV

Counts per bin

E in keV

Simulation, sensor only
Simulation, incl. backscattering
Measurement Kα1 59.3 keV
Conclusion

- For energies below 30 keV the energy response can be described by a convolution of a Gaussian charge distribution and the pixel aperture.
- For energies higher than 30 keV fluorescence of the assembly becomes significant (Silicon sensors) and the assembly as a whole has to be considered.

Energy response of the Medipix2 detector can be described by our simulation.

Thank you, for your attention