

Medipix2 at kilohertz frame rate

Cyril Ponchut – ISG Detector Systems

Iworid8 - Pisa 2-6 July 2006

Outline

- Fast detector needs on SR beamlines
- Readout speeds with Medipix2
- ESRF fast readout system
- Current status

An experiment can generate 10^9 to 10^{12} X-ray photons/second, this allows to acquire time-resolved data in the ms range or below.

- □ Explore dynamic processes in the ms time scale
- □ Reduce the data collection time
- Provide noiseless detection
- Optimize detection area

	SAXS	XPCS	СТ
Dynamic range	10 ⁶ (20 bits)	10 ² -10 ³	>104
Readout dead time	< 0.1 s	< ms (ideally)	ms desirable
Detectivity	~single photon	single photon	~single photon

		serial readout	32 bit parallel bus
clock		100 MHz*	100 MHz*
readout tim	e	9.18 ms	0.29 ms
frame rate	10 ms exposure	52 Hz	97 Hz
dead time	10 ms exposure	48%	3%
frame rate	1 ms exposure	98 Hz	775 Hz
dead time	1 ms exposure	90%	23%
dead time	1 kHz frame rate	-	29%

* possibly > 200 MHz

- Increase frame rate to $kHz \rightarrow time-resolved$, reduced dead time
- Enlarge detection area \rightarrow *more applications*
- In-house data readout –
- Full beamline integration \rightarrow accessible to **ESRF** users
- \rightarrow easier support/upgrading \rightarrow accessible to ESEE users

→ "MaxiPix"

MaxiPix project

Multichip assembly for X-ray imaging based on a photon-counting pixel array

- Based on Medipix-2 readout chip
- 1280 x 256 pixels (5 x 1 chips)
- up to 70 x 14 mm² detection area
- 2 (3) sides buttable module
- 0.3 ms readout dead time
- >1 kHz/chip frame rate

MaxiPix : the PRIAM board

PRIAM (Parallel Readout Image Acquisition for Medipix) ... the HEART of the system !

ESRF Instrument Support Group, Detector Electronics (J.Clement, J.M. Rigal)

- End-User oriented (not a test board).
- □ Get the maximum read-out rate of Medipix2.
- Group all features on one system (control, image acquisition, power,).
- Controlled by Pers. Computer(Windows /Linux)
- Able to control a detector with up to 5 Medipix2 chips.
- Send formated images(with 5 MDPX2) to PC at a rate better than 100 images/s.

PRIAM Fast Parallel Read-Out

- 32-bit bus from each Medipix is connected to a dedicated 32k*32-bit FIFO on PRIAM.
- These Fifo's allow 150MHz transfer rate (can be updated to a 225MHz version)
- PRIAM board must be as close as possible to Medipix2 chips.....
- For 100MHz transfer rate, the total read-out time(dead-time) of Medipix ASIC is 290µs

PRIAM architecture Image Acquisition/Image transfer

PRIAM Full Control of Medipix ASIC's

- Programmable oscillator for Medipix Clock from 15 to 300MHz.
- All parameters of each ASIC can be controlled by the PC.
- "Operation modes" defined for <u>MEDIPIX2MXR20</u> are totally available. Compatibility with <u>MEDIPIX2MX20</u> and <u>MEDIPIX2M</u>
- Test_Pulse generated by PRIAM or from external generator

PRIAM Additional Features

- Local 4-Mbit Serial Flash (up to 64 Mbits)
- Temperature sensors (1 on PRIAM + 1 close to Medipix ASICs). Provide Temperature and an unique serial number.
- The 2 above features will help for calibration, initialization and maintenance.
- Analog signal (LEMO00) is provided through a DAC channel(0 to 2.5V).(control of extern. HV)
- 2 TTL inputs and 2 outputs to synchronize image captures with other instruments.

Astronomical adaptive optics

Project partnership with University California Berkeley and University of Genève J.Vallerga et al., NIMA546 (2005)

wavefront sensing

effect of adaptive optics on point source image sharpness

□ Goal : up to 1 kHz sampling rate

PRIAM architecture: Image Acquisition /Adaptive Optic project

Results

Computer interface

- □ max. theoretical pixel rate = **100** Mpixels/s/fibre
- \Box min. readout time = 0.67 ms
- □ Windows and Linux drivers
- commercial product (<u>http://www.secad.fr/</u>)
- □ used in the ESRF "**FreLoN**" fast CCD camera system

Data flow timings

PRIAM Status

- Board under test since November 2005
 - > Serial and parallel access to MEDIPIX have been done at 100MHz
 - > 1000 frames/s rate (from MDPX to PC memory) have been validated
 - > Software control of all parameters and features of PRIAM board
- Options not tested :
 - > temperature sensor control
 - > on-line Look-up-table for flat-field correction
 - > architecture for Adaptive optics system
 - > parallel read-out speed ? 100 → 150 → 200 MHz → ??
- New PRIAM board (ready in September 06) with minor changes:
 - > Pin-Out of flex connectors.
 - Clock circuitry for Fifos
- Future:
 - Compatibility with TIMEPIX ?
 - Board (with local memory and local "image processing") to collect data from several MaxiPix systems and send to PC acquisition system a formatted image of the whole detector.

MaxiPix : detector modules

SR applications

Powder diffraction

- improved data SNR
- possible reduction of data collection time by a factor 100 or more
- increased time resolution

X-ray photon correlation spectroscopy

- simultaneous correlation measurements in time and Q domains with ms resolution
- Pump-probe (= spectroscopic) experiments
- accumulation of frames at high rate with no noise build-up

Small-angle scattering

Surface diffraction

Computed tomography

MaxiPix : a team project

ESRF

C. Ponchut J. Clément J.M. Rigal F. Lesimple E. Papillon A. Homs Univ. Genève

B. Mikulek D. La Marra CERN

M. Campbell Medipix collaboration

Univ. Berkeley J. Vallerga

. . .