Recent Development on CMOS Monolithic Active Pixel Sensors

Tracking detector applications

Giuliana Rizzo Università degli Studi di Pisa & INFN Pisa

8th International Workshop on

Radiation Imaging Detectors

Pisa, July 2-6 2006

G.Rizzo – IWORID-8 – Pisa, July 2-6 2006

Outline

- Introduction: Vertex Detectors in future high energy physics experiments
- CMOS MAPS Solution
 - Principle of operation
 - Basic Read-Out Architecture
 - Typical performance
- Main R&D directions
- New MAPS in triple well with signal processing at the pixel level
- MAPS in future experiments
- Conclusions

Introduction

- Future high energy experiments (ILC, SuperBfactory...) will need an ultra-light (< 50 μ m Si), very granular (~ 20 μ m pitch), multi-layer vertex detector close to the interaction point, running in high occupancy and high radiation environments
 - The technology needs to combine high granularity, little multiple scattering, high read-out speed and radiation hardness
- Existing pixel detector technology not adequate:
 - CCD: too slow and radiation soft
 - Hybrid Pixel Sensors: not granular and thin enough
- CMOS Monolithic Active Pixel Sensors (MAPS), developed for visible light imaging in early '90s, look very promising for application in future tracking devices

Principle of Operation

- Signal generated by a particle is collected by a diode (n-well/p-epitaxial layer), then readout by CMOS electronics integrated in the same substrate... BUT :
 - Charge generated by the incident particle moves by thermal diffusion in the <u>thin (~ 10 μm) p-epitaxial layer</u>
 - P-epi layer doping ~10¹⁵ cm⁻³
 - \rightarrow not depleted
 - \rightarrow carrier lifetime O(10 μ s), small diffusion distance
 - P++ substrate gives a small contribution to the collected charge (very low carrier lifetime)
 - Typical M.I.P. signal depends on epitaxial thickness (saturates for p-epi \sim 20 $\mu\text{m})$
 - Q ~ 80 e-h/µm -> Signal ~ 1000 e-
 - Typical collection time: \leq 100 ns for small diode, faster with larger diodes.
 - Charge-to-voltage conversion provided by sensor capacitance -> small collecting electrode

Principle of Operation

- Signal generated by a particle is collected by a diode (n-well/p-epitaxial layer), then readout by CMOS electronics integrated in the same substrate... BUT :
 - Charge generated by the incident particle moves by thermal diffusion in the thin (~ 10 μ m) p-epitaxial layer
 - P-epi layer doping ~10¹⁵ cm⁻³
 - \rightarrow not depleted
 - → carrier lifetime O(10 µs), small diffusion distance
 - P++ substrate gives a small contribution to the collected charge (very low carrier lifetime)
 - Typical M.I.P. signal depends on epitaxial thickness (saturates for p-epi ~ 20 $\mu\text{m})$
 - Q ~ 80 e-h/μm -> Signal ~ 1000 e-
 - Typical collection time: \leq 100 ns for small diode, faster with larger diodes.
 - Charge-to-voltage conversion provided by sensor capacitance -> small collecting electrode

Device Simulation (ISE-TCAD)

Charge collection movie ~ 100 ns

G.Rizzo – IWORID-8 – Pisa, Ju

Advantages of CMOS MAPS

Basic (3T) readout principle

G.Rizzo - IWORID-8 - Pisa, July 2-6 2006

- Pixel reset periodically: to compensate diode leakage current and remove collected charge from previous event
- Pixel selected&sampled twice during integration time: t_{fr2} - t_{fr1} =time to readout the entire frame.
 - Sequential readout of all pixel in the frame
- Offline signal extracted subtracting data from two consecutive samplings, before-after particle arrival (CDS) and removing pedestal from leakage current

Correlated Double Sampling (CDS)

G.Rizzo – IWORID-8 – Pisa, July 2-6 2006

MAPS activities around the world

- With first MAPS prototypes (basic 3T architecture and sequential readout) low noise detection of M.I.P demonstrated in 2001
- Since then the MAPS community has grown and is very active
- Non exhaustive list:
 - MIMOSA series (Strasbourg, Saclay, Clermont, Grenoble)
 - Minimum Ionizing MOS Active sensor
 - FAPS series (RAL, Liverpool)
 - Flexible Active Pixel Sensor
 - CAP series (Univ. Hawaii)
 - Continuous Acquisition Pixel
 - BNL,LBL,Univ.Oregon&Yale
 - Univ.Pisa/Pavia/Bergamo/Trieste/Bo (SLIM5-Collaboration)
 - Univ.Perugia/Parma (RAPS)
 - Others...

G.Rizzo – IWORID-8 – Pisa, July 2-6 2006

Main R&D Directions

- Results in first 6 years of R&D very encouraging:
 - Excellent M.I.P. detection efficiency and single point resolution established for several prototypes.
- Optimal fabrication process vs. epitaxial layer thickness, # metal layers, yield, dark current, cost, lifetime of process:
 - Many technologies explored:
 - AMS-0.6μm (14 μm), 0.35μm (0 !!!), 0.35μm OPTO (10-11 μm),
 - AMI (former MIETEC)-0.35μm (4 μm), IBM-0.25μm (2 μm),
 - TSMC-0.35 μ m (~10-12 μ m ?), TSMC-0.25 μ m (≤8 μ m), STM-0.13 μ m, Others ???
- Radiation Tolerance investigated partly: good performance obtained
- Industrial thinning procedure
 - satisfactory outcome from first prototype (50 μm)
 - Minimal thickness, individual chips rather than wafer, yield ??
- Fast integrated signal processing concentrates the efforts:
 - High readout speed, low noise, low power, highly integrated signal processing architectures needed to meet detector requirements
 - ILC :

Layer	Pitch	† _{r.o.}	N _{lad}	N _{pix}	P _{inst} diss	P_{mean}^{dis}
LO	20 μ m	25 μ s	20	25M	< 100 W	< 5 W

Overview of Achieved Performances

- Several MIMOSA prototypes (Strasbourg et al.) tested with H.E. beam (SPS, DESY) → well established performance:
 - N ~ 10 e-, S/N ~ 20-30 (MPV) $\Rightarrow \varepsilon_{det} \sim 99.5$ % , $\sigma_{sp} = 1.5-2.5 \ \mu m$ (20 μm pitch)
 - Best performing technology: AMS-0.35μm OPTO (12 μm epi layer)
 - Technology without epitaxial layer performs well (high S/N) but gives larger clusters (poor hit separation)
 - Macroscopic sensors: MIMOSA V(1.9x1.7cm²; 1Mpix), CAP-3(0.3x2.1cm²; 120kpix)

G.Rizzo – IWORID-8 – Pisa, July 2-6 2006

Radiation Tolerance

- <u>Transistors</u> In modern deep submicron tech. (eventually with special layout rules) they may be rad hard up to tens of Mrads and up to fluences of 10¹⁵ p/cm²
- <u>Diodes</u> Radiation damage affects S/N.
 - Non-ionizing radiation: bulk damage cause charge collection reduction, due to lower minority carrier lifetime (trapping)
 → fluences ~ 10¹² n_{eq}/cm² affordable, 10¹³ n_{eq}/cm² possible
 - Ionizing radiation:
 - noise increase, due to higher diode leakage current (surface damage)
 - \rightarrow OK up to 20 Mrad with low integration time (10 $\mu s)$ or
 - T operation < 0° C, or modified pixel design to improve it
 - charge loss also observed, technology dependent, probably related to positive charge build-up in thick oxide (under study)

Non-Ionizing Radiation

G.Rizzo - IWORID-8 - Pisa, July 2-6 2006

Ionizing Radiation Effects

 Aim for short integration time and low Toperation OR modify pixel design to keep leakage current increase under control (next slide) CAP (Hawaii) Prototypes irradiated with γ (60Co) up to 20 Mrad

- <u>Leakage current</u> saturates @ 5Mrad after proper annealing.
- Noise from leakage increases:

 $V_n^2(t_{\rm int}) = \frac{qI_{leak}}{C_D^2} t_{\rm int}$

 S/N reduction still modest for short integration time (<100 μs)

G.Rizzo - IWORID-8 - Pisa, July 2-6 2006

Reduce Ionizing Radiation Effects

Modified pixel design → avoid thick oxide near the N-well

Leakage contribution for irradiated sensor is dominated by surface defects at the interface between thick oxide and silicon

Still room for improvement

G.Rizzo – IWORID-8 – Pisa, July 2-6 2006

Thinning

• MIMOSA-5 wafers: 120 μ m sensor thickness repeatedly achieved

- ⇒no performance loss observed (several chips tested)
- MIMOSA-5 chips thinned to 50 µm
 via LBNL for STAR VD upgrade
 ⇒ Very Preliminary results
 - @ room Temperature (1.5 GeV e-)
 - TRACIT company (Europe):
 - successful (mech.)
 - ⇒ electrical tests foreseen

On going tests to thin down chips to 35-40 µm

High Readout Speed MAPS

- First MAPS prototypes realized with the basic 3T architecture and sequential readout showed very good results with M.I.P. but:
 - Extremely simple in-pixel readout configuration (3T)
 - → sequential readout → limitation for large detector: ~1 kHz sampling rate for Megapixel array
- Two main R&D directions to improve the readout speed with basic
 3T readout:
 - Pipeline design: charge sampled and stored inside pixel at high rate (100 KHz-10 MHz) readout delayed at slower rate (only interesting time window readout, or data transferred during no beam time window) → FAPS, CAP, MIMOSA 12
 - Parallel digital processing: signal processing at the column level \rightarrow MIMOSA 8
 - Different approach: MAPS with full signal processing at the pixel level (hybrid-pixel-like), designed exploiting triple well option available in CMOS commercial process. Readout easily compatible with data sparsification → high readout speed potential (SLIM5 Collaboration)

Pipeline pixels

 Flexible Active Pixel Sensor (FAPS, RAL): TSMC 0.25/8, <u>10 memory</u> <u>cell/pixel</u>; 28 transistor/pixel; 3 sub-arrays of 40x40 pixels @20 um pitch; sampling rate up to 10 MHz; Noise ~ 40 e- rms, single-ended readout. S/N=15-17.

- Continuous Acquisition Pixel (CAP, Hawaii): 3 versions produced in TSMC 0.35/8 and 0.25/8, 5 pairs cell/pixel in CAP3; Noise 40-50 e- rms single ended →20-25 e- differential. Sampling rate 100 KHz with CAP2.
- MIMOSA 12 (Strasbourg et al.) in AMS 035/14: 4 pairs cell/pixel (35 um pitch), exploring various dimensions of memory cell.

Parallel read-out architecture: MIMOSA 8

- Test beam results (DESY, 5GeV e-)
 - Analog part
 - Typical noise ⇒ ~ 12-15 e-
 - S/N (MPV) ~ 9 ⇒ thin epi layer
 - Pixel-to-pixel dispersion ~ 8 e-

- TSMC 0.25 μm fab. process with \sim 8 μm epi layer
- Pixel pitch: 25 μm
- CDS on pixel with 2 memory cell
- 24 parallel columns (128 pixels) with 1 discriminator per column
- 8 analogic columns
- Digital part: the discriminator works as expected:

⇒Excellent detection performance despite modest epi layer thickness ⇒Architecture validated for next steps: tech.with thick epi layer, rad. Tolerant pixel at Troom, ADC, sparsification etc.

G.Rizzo - IWORID-8 - Pisa, July 2-6 2006

Triple well CMOS MAPS (I)

SLIM5-Collaboration

- Use of commercial triple-well CMOS process proposed to address some limitations of conventional MAPS
 - improve readout speed with in-pixel signal processing
 - improve single pixel signal with a larger collecting electrode

In triple-well processes a deep n-well is used to provide Nchannel MOSFETs with better insulation from digital signals

This feature exploited for a new approach in the design of CMOS pixels:

- The deep n-well can be used as the collecting electrode
- A full signal processing circuit can be implemented at the pixel level overlaying NMOS transistors on the collecting electrode area

Triple well CMOS MAPS (II)

Standard processing chain for capacitive detector implemented at pixel level

- Charge preamplifier used for Q-V conversion:
 - Gain is independent of the sensor capacitance -> collecting electrode can be extended to increase the signal
- RC-CR shaper with programmable peaking time (0.5, 1 and 2 $\mu s)$
- A threshold discriminator is used to drive a NOR latch featuring an external reset

 Fill factor = deep n-well/total n-well area ≥ 0.85 in the prototype test structures → high detection efficiency

٠

Readout scheme compatible with existent architectures for data sparsification at the pixel level -> improve readout speed

Triple Well MAPS Results

First prototype chip, with single pixels, realized in 0.13 µm triple well CMOS process (STMicrolectronics)

- Very encouraging results:
 - Proof of principle
 - S/N = 10 (90 Sr β source)
 - Single pixel signal ~1250e-(only 300 e- in conventional MAPS!)
 - High pixel noise ENC = 125 e-(due to underestimated deep nwell capacitance)

⁹⁰Sr electrons

<u>Second prototype</u> under test:

- Pixel matrix (8x8, 50x50 μm^2) with simple sequential readout tested up to 30 MHz.

Noise only

- Pixels with varying electrode size (900-2000 μ m²)
- Improved front-end: pixel noise ENC = 50 e-

 \rightarrow M.I.P. Expected S/N ~ 25

Problems: threshold dispersion measured ~300 e-, ground line bouncing in digital transitions.

Next steps for triple well MAPS

- Final ambitious goal of the SLIM5 Collaboration is to design a monolithic pixel sensor with similar readout functionalities as in hybrid pixels (sparsification, time stamping), suitable to be used in a trigger (L1) system based on associative memories.
 →Test beam in 2008.
- First triple well MAPS prototypes (0.13 μ m-ST), with full signal processing at the pixel level, demonstrated capability to detect ionizing radiation with good S/N.
- Next prototypes (Aug-Nov '06) will improve significantly threshold dispersion (to noise level) and test readout architecture with data sparsification and time stamp.
- Radiation Tolerance should still be investigated:
 - Design with large collecting electrode expected to be more rad hard against non-ionizing radiation.
 - Charge preamp. with continuous reset less sensitive to leakage current increase from ionizing radiation

Applications of MAPS in future experiments

- First detectors made of CMOS MAPS coming soon:
 - MIMOSA sensors will equip
 - STAR Heavy Flavour Tagger:
 - 2008 analog output, 4 ms readout time
 - 2011 digital output ~ 200 μs frame r.o. time
 - EUDET beam telescope for ILC R&D:
 - 2007 demonstrator with analog output
 - 2008 final device with digital output
- CMOS MAPS developed also for:
 - ILC Vertex Detector: R&D France, UK, USA, Italy...
 - SuperBFactory Vertex Detector: R&D in Hawaii (Belle), Italy (BaBar)

Conclusions

- Future vertex detectors need a new technology (granular, thin, fast...) and CMOS sensors could potentially accommodate all the requests
- Excellent tracking performance established in the first years of R&D on CMOS MAPS
- The MAPS community, very active and still growing, has still a lot to do in the coming years to convert a good idea into a real operating detector for the most challenging applications
- Main R&D directions:
 - High readout speed MAPS, digital output & sparsification
 - Radiation tolerance
 - Thinning procedure
 - New fabrication processes