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New MAPS in triple well with signal processing at
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Introduction

Future high energy experiments (ILC, SuperBfactory...) will
need an ultra-light (< 50 um Si), very granular (~ 20 um pitch),
multi-layer vertex detector close to the interaction poinft,
running in high occupancy and high radiation environments

- The technology needs to combine high granularity, little multiple
scattering, high read-out speed and radiation hardness

Existing pixel detector technology not adequate:

- CCD: too slow and radiation soft
- Hybrid Pixel Sensors: not granular and thin enough

R T~
CMOS Monolithic Active Pixel Sensors T
(MAPS), developed for visible light '
imaging in early '90s, look very
promising for application in future
tracking devices
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Principle of Operation

Signal generated by a particle is collected
by a diode (n-well/p-epitaxial layer), then
readout by CMOS electronics integrated in

the same substrate... BUT :

Charge generated by the incident
particle moves by thermal diffusiony

the thin (~ 10 um) p-epitaxial layer
P-epi layer doping ~10% cm-3
- not depleted

- carrier lifetime O(10 pus), small
diffusion distance

P++ substrate gives a small contribution
to the collected charge (very low carrier
lifetime)

Typical M.I.P. signal depends on epitaxial
thickness (saturates for p-epi ~ 20 um)

- Q ~ 80 e-h/um -> Signal ~ 1000 e-
Typical collection time: < 100 ns for
small diode, faster with larger diodes.

Charge-to-voltage conversion provided
by sensor capacitance -> small collecting
electrode
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Device Simulation
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Pixel pitch 17 um, diode 3
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Device Simulation Charge collection

Principle of Operation (ISE-TCAD) movie — 100 ns
Signal generated by a particle is collected . MimosaV.
by a diode (n-well/p-epitaxial layer), then F:r):,e,IEF;EPhileﬁg;’Sdl'zd;f

readout by CMOS electronics integrated in
the same substrate.. BUT :

Charge generated by the incident +
particle moves by thermal diffusiony
the thin (~ 10 um) p-epitaxial layer
P-epi layer doping ~10% cm-3
- not depleted

- carrier lifetime O(10 ps), small
diffusion distance
P++ substrate gives a small contribution
to the collected charge (very low carrier
lifetime)
Typical M.I.P. signal depends on epitaxial
thickness (saturates for p-epi ~ 20 um)
- Q ~ 80 e-h/um -> Signal ~ 1000 e-
Typical collection time: < 100 ns for
small diode, faster with larger diodes.

Charge-to-voltage conversion provided

by sensor capacitance -> small collecting
electrode

D. Contarato
(LBL)
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Advantages of CMOS MAPS

Same substrate for detector & readout:
System-on-chip, compact and flexible

MAPS sensitive volume only 10-15 um thick N oo
- thin down to < 50 um possible

- less material in the detection regio - -\
. . Hybrid pixel sensor
w.r.t hybrid pixel d

Sensor faster and more rad hard than CCDs

front end
electronics

E
H

sensor

—>no charge transport along the sensor volume\

CMOS commercial process
- low power consumption and fabrication costs : . :
- high functional density and versatility e P
- electronics intrinsically radiation hard i T |

(deep submicron tech.)
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Basic (3T) readout principle

Only 3Transistors
inside pixel cell:
reset,select& sense

Voo

Source follower
RESET buffering of
M1 collected charge

Elementary cell

dixel

?

1 Pixel Voltage vs. time
Vrese

Integration
tq time

COLUMN LINE
19S9I —

tfr2

To the col.
y amplifier

: & storage

Pixel Array: Column select — ganged row read

G.Rizzo — IWORID-8 — Pisa, July 2-6 2006

Pixel reset periodically:
to compensate diode
leakage current and
remove collected
charge from previous
event

Pixel selected&sampled
twice during integration
time: ty.o- T4 =Time to
readout the entire frame.
Sequential readout of
all pixel in the frame

Offline signal extracted
subtracting data from
two consecutive
samplings, before-after
particle arrival (CDS)
and removing pedestal
from leakage current




Correlated Double Sampling (CDS)

Framel - Frame 2 =

- Leakage current |

Correction

~fA leakage current (typ)
~18fA for hottest pixel shown i

i
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8ms integration shown

Hit candidate! T * = -
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MAPS activities around the world

- With first MAPS prototypes (basic 3T architecture and sequential
readout) low noise detection of M.I.P demonstrated in 2001

MIMOSA U (AMS0.6pm)

- Since then the MAPS community
has grown and is very active

*  Non exhaustive list:

MIMOSA Il (AMED.35pm)

- MIMOSA series (Strasbourg, Saclay,

Sl MiMosA v
Clermont, Grenoble) =
- Minimum Tonizing MOS Active sensor

- FAPS series (RAL, Liverpool)

- Flexible Active Pixel Sensor
- CAP series (Univ. Hawaii)
- Continuous Acquisition Pixel
- BNL,LBL,Univ.Oregon&Yale
- Univ.Pisa/Pavia/Bergamo/Trieste/Bo
(SLIMb5-Collaboration)
- Univ.Perugia/Parma (RAPS)
- Others..
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Main R&D Directions

Results in first 6 years of R&D very encouraging:

- Excellent M.I.P. detection efficiency and single point resolution established
for several prototypes.

Optimal fabrication process vs. epitaxial layer thickness, # metal
layers, yield, dark current, cost, lifetime of process:

- Many technologies explored:
- AMS-0.6um (14 pm), 0.35um (0 !!1), 0.35um OPTO (10-11 pm),
e AMI (former MIETEC)-0.35um (4 um), IBM-0.25um (2 um),
- TSMC-0.35um (~10-12 um ?), TSMC-0.25um (<8 um), STM-0.13 um, ~ Others ???

Radiation Tolerance investigated partly: good performance obtained

Industrial thinning procedure

- satisfactory outcome from first prototype (50 pm)

- Minimal thickness, individual chips rather than wafer, yield ??
Fast integrated signal processing concentrates the efforts:

High readout speed, low noise, low power, highly integrated signal
processing architectures needed to meet detector requirements
- ILC:

Layer Pitch Tro. Nlad Npix PinS'rdiSS Pmeandis

LO 20 um | 25 s 20 | 25M ([<100W |<BW
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Overview of Achieved Performances

Several MIMOSA prototypes (Strasbourg et al.) tested with H.E.
beam (SPS, DESY) - well established performance:
- N~10e-, S/N~20-30 (MPV) Deyy ~995% , o= 1.5-2.5 um (20 pum pitch)
- Best performing technology: AMS-0.35um OPTO (12 um epi layer)

- Technology without epitaxial layer performs well (high S/N) but gives larger
clusters (poor hit separation)

- Macroscopic sensors: MIMOSA V(1.9x1.7cm?2; IMpix), CAP-3(0.3x2.1cm?;
120kpix)

_spre Sp resol. vs pltch
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Radiation Tolerance

Transistors - In modern deep submicron tech. (eventually
with special layout rules) they may be rad hard up to tens
of Mrads and up to fluences of 10'° p/cm?

Dlodes Radiation damage affects S/N.
Non-ionizing radiation: bulk damage cause charge collection
reduction, due to lower minority carrier lifetime (trapping)
~ fluences ~ 102 n,./cm? affordable, 103 n,,/cm? possible
- Tonizing radiation:
noise increase, due to higher diode leakage current (surface
damage)
—> OK up to 20 Mrad with low integration time (10 us) or
T operation < 0° C, or modified pixel design to improve it

charge loss also observed, technology dependent, probably related to
positive charge build-up in thick oxide (under study)
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Non-Ionizing Radiation

Signal (ADU counts)

*  TIrradiation with neutron/proton with ES—— /“‘
fluences up to 101314 p/cm? - \ r =
= '.m_: Threshold !‘ !\ ::
- Charge loss at 102 I’qu/Cl’\'\2 = [ 1 \ %ﬂm
. 3 o V) \ smmalbs
- Modest increase of leakage and noise ~ 10% A
L ey
o T e st RALHEPAPS2 | = ™  * o [MMOSAH
F_“G : _:}I;g;g %1400'_." Mon irradiated L ] i
%20 ;v :z:‘ufosn Euuo!‘/.. R R +_j°’ B..ﬂ'!os.s;. Charge loss correlated to the
100f o @ % %ﬂm ' . | diode/pixel area ratio:
80 » i °® 3 : S Mimosal 1-diode pixel « B . longer distance to reach the
601 2, M - gog[— @ Mimosal d-diode pixel . e 1 collecting diode - higher
400 = - o onundons - recombination probability
20 : eoo l . large or multiple electrodes/pixel
0 L 0ol : H ; L work better
10 12 14 16 L Y I P
Dose (log,,.(p/cm2)) 10° 10" 10" 10" 0"
Neutron fluence [n/cm 2] S/N
MIMOSA - AMS-0.35 OPTO (~11 um epi) — —
test beam CERN-SPS Fluence T=200¢  T=0°C
0 284 +02 263+02
*  Fluence of > 1012 neq/Cm2 affordable 3.-101! neq;cmﬂ _ 230+ 0.2
(T<0°C) Effidet ~99.7 % 10'2 neglem? | 187 + 02 —
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Leakage current [pA/cm2]

Ionizing Radiation Effects

0.35mm CMOS APS Leakage Current CAP (Hawaii) Prototypes irradiated
[Belecamprotote | ity vy (69Co) up to 20 Mrad

Eg
Rt yal ; = ° Leakage current saturates @
AN R 5Mrad after proper annealing.

100000
60hr/60C+2mo/20C

\ —a3Mrad 15d anneal. o NOlSZ fr‘om Ieakage incr‘eases:
10000

——04-09-07/1w@60C
1000 \

——04-09-14/2w@60C q I
’ | L ‘.\ — 04-09-21/3w@60C | V (t ) Clezak tint
%/M l IEEE T Mucl. Sc. 48, 1796- D
o0 | — - S/N reduction still modest for

10000000 "]

annealed

—— 22-Sep-04 int

0.001 0.01 R:;iaﬁon IMR-Iad] 10 100 ShOf‘T inTegr'GTion Time (<100 MS)
on (300e- signal, 16e- system noise)
Aim for short integration time M : S
and low Toperation 5
OR o T

modify pixel design to keep i =S
leakage current increase under i =
control (next slide) HE

o Y Radiation d105e [MRad] ° E:‘é;ljﬂ?j:ﬂ" from upper edges
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Reduce Ionizing Radiation Effects

Modified pixel design

— avoid thick oxide near the N-well Leakage contribution for irradiated sensor
is dominated by surface defects at the

interface between thick oxide and silicon

RASARSEE  Beamtest on MIMOSALI

Running conditions: +40°C, 700us readout time ~ After After 1 Mrad
5 %6 New 20kRad
e 4 IH\L Y/ J ;"* 4 Standard pixel (AO Sub 2) 1
=i i N .' S/N (MPV): 239 | 103  * Noise vs. integration
ARRAY 0 51b 2 P Det Eff [%]: 99.9 | 97.7 time and Toperation

Noise [e]: 10.7 | 23.5 confirmed modified

— design is effective
- . "~ “ - Hardened pixel OK @ 1
- | l l H s Hardened pixel (AOSub 1) Mrad at T < 0° C
o OSe Y '\“"‘ oy e N S/N(MPV): 149 | 15.1
i l. N Det Eff [%]: 99.5 | 99.6
ARRAY 0 5ub 1 P-epi Noise [ﬁ-]l 16.1 | 16.1

Still room for improvement
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Thinning

MIMOSA-5 wafers: 120 um sensor thickness repeatedly achieved
- =no performance loss observed (several chips tested)

> MIMOSA_5 Chips Thinned TO 50 Mm [ Ciuster SIN comparison | | D.Contarato - LBL
§ 700[—
- via LBNL for STAR VD upgrade 5 qol (room T) [Prebeckihiming (oo
= Ver'y Preliminar‘y results 50"5_ Pz:iackthinninqc:fsn?}
@ room Temperature (1.5 GeVe-) .t | Mean 000
» RMS 4.229

- TRACIT company (Europe): 200 Very preliminary
» successful (mech.) 100
= electrical tests foreseen e RN R R RN - e Cay

Cluster S/N

On going tests to thin down chips to 35-40 pym
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High Readout Speed MAPS

First MAPS prototypes realized with the basic 3T architecture and
sequential readout showed very good results with M.I.P. but:
- Extremely simple in-pixel readout configuration (3T)

— sequential readout -> limitation for large detector: ~1 kHz sampling rate for
Megapixel array

+  Two main R&D directions to improve the readout speed with basic

3T readout:

- Pipeline design: charge sampled and stored inside pixel at high rate (100 KHz-
10 MHz) readout delayed at slower rate (only interesting time window readout,
or data transferred during no beam time window) - FAPS, CAP, MIMOSA 12

- Parallel digital processing: signal processing at the column level > MIMOSA 8

Different approach: MAPS with full signal processing at the pixel level
(hybrid-pixel-like), designed exploiting triple well option available in CMOS
commercial process. Readout easily compatible with data sparsification > high
readout speed potential (SLIM5 Collaboration)
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Pipeline pixels

Flexible Active Pixel Sensor (FAPS, RAL): TSMC 0.25/8, 10 memory
cell/pixel; 28 transistor/pixel; 3 sub-arrays of 40x40 pixels @20 um
pitch; sampling rate up o 10 MHz; Noise ~ 40 e- rms, single-ended

readout. S/N=15-17.

.1

!
BE

D

i

100 200 300
Cluster signal (ADC counts)

ssssss SCHEMATIC
. DIAGRAM 50 Sam=55i2
FAP | 25
3 D

Continuous Acquisition Pixel (CAP, Hawaii): 3 versions produced in TSMC
0.35/8 and 0.25/8, 5 pairs cell/pixel in CAP3; Noise 40-50 e- rms single
ended >20-25 e- differential. Sampling rate 100 KHz with CAP2,

MIMOSA 12 (Strasbourg et al.) in AMS 035/14: 4 pairs cell/pixel (35

um pitch) , exploring various dimensions of memory cell.
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Parallel read-out architecture: MIMOSA 8

- TSMC 0.25 um fab. process with ~ 8 um epi layer

Test beam results (DEsY, 56eV e-)

- Analog part
* Typical noise > ~ 12-15 e-
S/N (MPV) ~ 9 = thin epi layer
Pixel-to-pixel dispersion ~ 8 e-
- Digital part: the discriminator works as expected:

[me Hit Efficiency (%) vs S/N cut

=
[=]
[=]

95

Efficiency (%)

90

85

80

75

Dicde size
12%x12um*2
1.7 x 1.7 um*2
2.4 % 2.4 um"2

IReS-Strasbourg. Besson

Discri. S/N cut

K Fake hit rate (%) vs S/N cut

2102

Average hit rate per pixelleve
-
=]
[

- Pixel pitch: 25 um

- CDS on pixel with 2 memory cell
- 24 parallel columns (128 pixels) with 1

discriminator per column
- 8 analogic columns

Diode size

— 12 x12um"2
1.7 % 1.7 um*2
24 x24um2

IRe&-Strasbourg. Besson

T = 20°C;
r.o. clock= 40 MHz

Discri. S/N cut

=>Excellent detection performance despite modest epi layer thickness
= Architecture validated for next steps: tech.with thick epi layer, rad. Tolerant pixel at Troom,

ADC, sparsification etc.
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Readout frame 20 ps
With r.o. clock= 150 MHz
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Triple well CMOS MAPS (T)

SLIM5-Collaboration

* Use of commercial friple-well CMOS process proposed to
address some limitations of conventional MAPS

- improve readout speed with in-pixel signal processing
- improve single pixel signal with a larger collecting electrode

NMOS NMOS NMOS PMOS

NWELL

In triple-well processes a deep
n-well is used to provide N-
channel MOSFETs with better A
insulation from digital signals

This feature exploited for a new approach in the design of CMOS pixels:

The deep n-well can be used as the collecting electrode

A full signal processing circuit can be implemented at the pixel level overlaying
NMOS transistors on the collecting electrode area
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Triple well CMOS MAPS (IT)

¢ Standard processing chain for capacitive detector implemented at pixel level

Charge preamplifier used for Q-V N N Sl
conversion: _ ’_F—:'nj 1—‘ , Elementary cell
- Gain is independent of the sensor # ” n DL IT NI T2 ||

capacitance -> collecting electrode can be

extended to increase the signal

RC-CR shaper with programmable peaking
time (0.5, 1 and 2 ps)

A threshold discriminator is used to drive

deep

n-well
p~ epitaxial layer

a NOR latch featuring an external reset </

. p* substrate

Analog section Digital section
PMOS PMOS

Fill factor = deep n-well/total n-well area > 0.85 in the
prototype test structures - high detection efficiency

Analog section NMOS
(including the input device)
+
collecting electrode

uop29s e1i61a

Readout scheme compatible with existent architectures
for data sparsification at the pixel level -> improve s
readout speed
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Triple Well MAPS Results [Neseenivy | *Sr electrons

(no sour'c?)

: : : o Y A T
- First prototype chip, with S 000 hreshaid | Landay
Slngle plxels, r‘ealized |n 013 L 500 E_ ....... .......... ............. ........... pea Ei’l’\ e ...........
um Tr'iple well CMOS pr'ocess 400 .......... L T ........... ............ A
. . C : saturation due
(STMICF'O|€CTI"OHICS) 300 Fo ------ di ----------- o lowlenergy
- Very encouraging results: 200 Eot N eI |
- Proof of principle 100 f o TS N I
- S/N = 10 (°Sr B source) o b i, Wi el
. Single pixel signal ~1250e- 002 004 006 0.08 01 012 014 0.16 n.‘}aut 0.2
(only 300 e- in conventional | ° I(V) -
MAPS!) | T
* High pixel noise ENC = 125 e- 1250 2200 3000 (e-)
(due to underestimated deep
nwell capacitance) Second prototype under test:

Pixel matrix (8x8, 50x50 um? ) with simple sequential readout
tested up to 30 MHz.

Pixels with varying electrode size (900-2000 um?)
Improved front-end: pixel noise ENC = 50 e-
- M.I.P. Expected S/N ~ 25
Problems: threshold dispersion measured ~300 e-, ground line
e pixel tost bouncing in digital transitions.
e G.Rizzo — IWORID-8 — Pisa, July 2-6 2006 22

dummies



Next steps for triple well MAPS

Final ambitious goal of the SLIM5 Collaboration is to design a

monolithic pixel sensor with similar readout functionalities as

in hybrid pixels (sparsification, fime stamping), suitable to be

used in a trigger (L1) system based on associative memories.
> Test beam in 2008.

First triple well MAPS prototypes (0.13 um-ST), with full
signal processing at the pixel level, demonstrated capability
to detect ionizing radiation with good S/N.

Next prototypes (Aug-Nov ‘06) will improve significantly
threshold dispersion (to noise level) and test readout
architecture with data sparsification and time stamp.
Radiation Tolerance should still be investigated:

- Design with large collecting electrode expected to be more rad
hard against non-ionizing radiation.

- Charge preamp. with continuous reset less sensitive to leakage
current increase from ionizing radiation

G.Rizzo — IWORID-8 — Pisa, July 2-6 2006

23



Applications of MAPS in future experiments

First detectors made of CMOS MAPS coming soon:

- MIMOSA sensors will equip

* STAR Heavy Flavour Tagger:
- 2008 analog output, 4 ms readout time
- 2011 digital output ~ 200 us frame r.o. time

- EUDET beam telescope for ILC R&D:

- 2007 demonstrator with analog output
- 2008 final device with digital output

* CMOS MAPS developed also for:
- ILC Vertex Detector: R&D France, UK, USA, Ttaly..

- SuperBFactory Vertex Detector: R&D in Hawaii (Belle),
Ttaly (BaBar)

G.Rizzo — IWORID-8 — Pisa, July 2-6 2006
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Conclusions

Future vertex detectors need a new technology
(granular, thin, fast...) and CMOS sensors could
potentially accommodate all the requests

Excellent tracking performance established in the
first years of R&D on CMOS MAPS

The MAPS community, very active and still growing, has
still a lot to do in the coming years to convert a good
idea into a real operating detector for the most
challenging applications

Main R&D directions:

- High readout speed MAPS, digital output & sparsification

- Radiation folerance

- Thinning procedure

- New fabrication processes
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