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Outline

• Introduction: Vertex Detectors in future high 
energy physics experiments

• CMOS MAPS Solution
– Principle of operation
– Basic Read-Out Architecture 
– Typical performance

• Main R&D directions
• New MAPS in triple well with signal processing at 

the pixel level
• MAPS in future experiments
• Conclusions
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Introduction
• Future high energy experiments (ILC, SuperBfactory…) will 

need an ultra-light (< 50 µm Si), very granular (~ 20 µm pitch), 
multi-layer vertex detector close to the interaction point, 
running in high occupancy and high radiation environments
– The technology needs to combine high granularity, little multiple 

scattering, high read-out speed and radiation hardness
• Existing pixel detector technology not adequate:

– CCD: too slow and radiation soft
– Hybrid Pixel Sensors: not granular and thin enough

• CMOS Monolithic Active Pixel Sensors 
(MAPS), developed for visible light 
imaging in early ’90s, look very 
promising for application in future 
tracking devices
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Principle of Operation
• Signal generated by a particle is collected 

by a diode (n-well/p-epitaxial layer), then 
readout by CMOS electronics integrated in 
the same substrate… BUT : 
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• Charge generated by the incident 
particle moves by thermal diffusion in 
the thin (~ 10 µm) p-epitaxial layer
• P-epi layer doping ~1015 cm-3

not depleted
carrier lifetime O(10 µs), small 
diffusion distance 

• P++ substrate gives a small contribution 
to the collected charge (very low carrier 
lifetime)

• Typical M.I.P. signal depends on epitaxial
thickness (saturates for p-epi ~ 20 µm)

– Q ~ 80 e-h/µm -> Signal ~ 1000 e-
• Typical collection time: ≤ 100 ns for 

small diode, faster with larger diodes.
• Charge-to-voltage conversion provided 

by sensor capacitance ->  small collecting 
electrode

P-epitaxial 
layer ~ 10 µm
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Advantages of CMOS MAPS

• Same substrate for detector & readout:
• System-on-chip, compact and flexible 

• MAPS sensitive volume only 10-15 µm thick
thin down to < 50 µm possible
less material in the detection region 

w.r.t hybrid pixel
• Sensor faster and more rad hard than CCDs

no charge transport along the sensor volume

• CMOS commercial process
– low power consumption and fabrication costs
– high functional density and versatility
– electronics intrinsically radiation hard

(deep submicron tech.)

chip

Hybrid pixel sensor
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Basic (3T) readout principle

Pixel
ADC

& storage

Pixel Array: Column select – ganged row read

High-speed

analog

Array of  pixels

time

Vreset

∆VtypαIleak

∆VsigαQsignal

Integration 
time tfr2tfr1

reset

• Pixel reset periodically: 
to compensate diode 
leakage current and 
remove collected 
charge from previous 
event

• Pixel selected&sampled 
twice during integration 
time: tfr2- tfr1 =time to 
readout the entire frame.

• Sequential readout of 
all pixel in the frame

Only 3Transistors  
inside pixel cell: 
reset,select& sense

Source follower 
buffering of 
collected charge

• Offline signal extracted
subtracting data from 
two consecutive 
samplings, before-after 
particle arrival (CDS)  
and removing pedestal 
from leakage current

Pixel Voltage vs. time
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Correlated Double Sampling (CDS)

(                                 - )

Frame 1  - Frame 2 =

8ms integration shown

- Leakage current
Correction

~fA leakage current (typ)
~18fA for hottest pixel shown

Hit candidate!

G. Varner (Hawaii), CAP sensors
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MAPS activities around the world
• With first MAPS prototypes (basic 3T architecture and sequential

readout) low noise detection of M.I.P demonstrated in 2001

• Since then the MAPS community 
has grown and is very active

• Non exhaustive list: 
– MIMOSA series (Strasbourg, Saclay, 

Clermont, Grenoble)  
– Minimum Ionizing MOS Active sensor

– FAPS series (RAL, Liverpool)
– Flexible Active Pixel Sensor

– CAP series (Univ. Hawaii)
– Continuous Acquisition Pixel

– BNL,LBL,Univ.Oregon&Yale 
– Univ.Pisa/Pavia/Bergamo/Trieste/Bo 

(SLIM5-Collaboration)
– Univ.Perugia/Parma (RAPS)
– Others…

CAP-3
LBL

RAPS01

FAPS

SLIM5

MIMOSA V
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Main R&D Directions
• Results in first 6 years of R&D very encouraging:

– Excellent M.I.P. detection efficiency and single point resolution established 
for several prototypes.

Layer Pitch tr.o. Nlad Npix Pinst
diss Pmean

dis

L0 20 µm 25 µs 20 25M < 100 W < 5 W

– Optimal fabrication process vs. epitaxial layer thickness, # metal 
layers, yield, dark current, cost, lifetime of process:
– Many technologies explored:

• AMS-0.6µm (14 µm), 0.35µm (0 !!!), 0.35µm OPTO (10-11 µm),  
• AMI (former MIETEC)-0.35µm (4 µm), IBM-0.25µm (2 µm),   
• TSMC-0.35µm (~10-12 µm ?), TSMC-0.25µm (≤8 µm), STM-0.13 µm,    Others ???

– Radiation Tolerance investigated partly: good performance obtained
– Industrial thinning procedure

– satisfactory outcome from first prototype (50 µm)
– Minimal thickness, individual chips rather than wafer, yield ?? 

• Fast integrated signal processing concentrates the efforts:
• High readout speed, low noise, low power, highly integrated signal 

processing architectures needed to meet detector requirements
• ILC :
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Overview of Achieved Performances
• Several MIMOSA prototypes (Strasbourg et al.) tested with H.E. 

beam (SPS, DESY) well established performance:
– N ~ 10 e-,  S/N ~ 20-30 (MPV) εdet ~ 99.5 %   ,   σsp = 1.5-2.5 µm (20 µm pitch) 
– Best performing technology: AMS-0.35µm OPTO (12 µm epi layer) 
– Technology without epitaxial layer performs well (high S/N) but gives larger 

clusters (poor hit separation)
– Macroscopic sensors: MIMOSA V(1.9x1.7cm2 ; 1Mpix), CAP-3(0.3x2.1cm2 ; 

120kpix)
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M9: S/N in seed pixel

MPV ~ 26

M9: Efficiency vs Temp. Sp. resol. vs pitch

M.Winter-FEE06



Radiation Tolerance

• Transistors - In modern deep submicron tech. (eventually 
with special layout rules) they may be rad hard up to tens 
of Mrads and up to fluences of 1015 p/cm2 

• Diodes - Radiation damage affects S/N.
• Non-ionizing radiation: bulk damage cause charge collection 

reduction, due to lower minority carrier lifetime (trapping) 
fluences ∼ 1012 neq/cm2 affordable, 1013 neq/cm2  possible

• Ionizing radiation: 
• noise increase, due to higher diode leakage current (surface 

damage)  
OK up to 20 Mrad with low integration time (10 µs) or

T operation < 0o C, or modified pixel design to improve it
• charge loss also observed, technology dependent, probably related to 

positive charge build-up in thick oxide (under study)
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Non-Ionizing Radiation
• Irradiation with neutron/proton with 

fluences up to 1013-14 p/cm2

– Charge loss at 1012 neq/cm2

– Modest increase of leakage and noise ~ 10%

• S/N (MPV) vs fluence and T
• Fluence of ≥ 1012 neq/cm2  affordable

(T < 0o C)  Effi det ~ 99.7 % 

MIMOSA I-IIRALHEPAPS-2 

MIMOSA - AMS-0.35 OPTO (~11 um epi)
test beam CERN-SPS

Charge loss correlated to the 
diode/pixel area ratio:
• longer distance to reach the 

collecting diode higher 
recombination probability

• large or multiple electrodes/pixel 
work better

S/N

Fe55-spectrum
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Ionizing Radiation Effects

• Leakage current saturates @ 
5Mrad after proper annealing.

CAP (Hawaii) Prototypes irradiated 
with γ (60Co) up to 20 Mrad

• Noise from leakage increases:

• S/N reduction still modest for 
short integration time (<100 µs)

• Aim for short integration time 
and low Toperation

OR 
modify pixel design to keep 
leakage current increase under 
control (next slide)

int2int
2 )( t

C
qItV

D

leak
n =

S/N vs dose
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Reduce Ionizing Radiation Effects
Modified pixel design 

avoid thick oxide near the N-well Leakage contribution for irradiated sensor 
is dominated by surface defects at the 
interface between thick oxide and silicon

10 keV X-ray

After 1 Mrad

• Noise vs. integration 
time and Toperation 
confirmed modified 
design is effective
• Hardened pixel OK @ 1 
Mrad at T < 0o C 

Still room for improvement
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Thinning

• MIMOSA-5 wafers: 120 µm sensor thickness repeatedly achieved 
– no performance loss observed (several chips tested)

D.Contarato - LBLMIMOSA-5 chips thinned to 50 µm

– via LBNL for STAR VD upgrade
Very Preliminary results 

@ room Temperature (1.5 GeV e-)

– TRACIT company (Europe): 
• successful (mech.)  

electrical tests foreseen

On going tests to thin down chips to 35-40 µm
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High Readout Speed MAPS
• First MAPS prototypes realized with the basic 3T architecture and 

sequential readout showed very good results with M.I.P. but:
– Extremely simple in-pixel readout configuration (3T) 

sequential readout limitation for large detector: ~1 kHz sampling rate for 
Megapixel array

• Two main R&D directions to improve the readout speed with basic 
3T readout:
– Pipeline design: charge sampled and stored inside pixel at high rate (100 KHz-

10 MHz) readout delayed at slower rate (only interesting time window readout,  
or data transferred during no beam time window)  FAPS, CAP, MIMOSA 12

– Parallel digital processing: signal processing at the column level MIMOSA 8

• Different approach: MAPS with full signal processing at the pixel level
(hybrid-pixel-like), designed exploiting triple well option available in CMOS 
commercial process. Readout easily compatible with data sparsification high 
readout speed potential (SLIM5 Collaboration)  
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Pipeline pixels
• Flexible Active Pixel Sensor (FAPS, RAL): TSMC 0.25/8, 10 memory 

cell/pixel; 28 transistor/pixel; 3 sub-arrays of 40x40 pixels @20 um 
pitch; sampling rate up to 10 MHz; Noise ~ 40 e- rms, single-ended 
readout. S/N=15-17. 

Cluster signal (ADC counts)

• Continuous Acquisition Pixel (CAP, Hawaii): 3 versions produced in TSMC 
0.35/8 and 0.25/8, 5 pairs cell/pixel in CAP3; Noise 40-50 e- rms single 
ended 20-25 e- differential. Sampling rate 100 KHz with CAP2.

• MIMOSA 12 (Strasbourg et al.) in AMS 035/14: 4 pairs cell/pixel (35 
um pitch) , exploring various dimensions of memory cell. R.Turchetta-SNIC06
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Parallel read-out architecture: MIMOSA 8
• Test beam results (DESY, 5GeV e-)

– Analog part
• Typical noise ~ 12-15 e-
• S/N (MPV) ~ 9 thin epi layer
• Pixel-to-pixel dispersion ~ 8 e-

– Digital part: the discriminator works as expected:

- TSMC 0.25 µm fab. process with ~ 8 µm epi layer
- Pixel pitch: 25 µm
- CDS on pixel with 2 memory cell 
- 24 parallel columns (128 pixels) with 1  
discriminator per column
- 8 analogic columns 

T = 20oC; 
r.o. clock= 40 MHz

Fake hit rate (%) vs S/N cutHit Efficiency (%) vs S/N cut

Readout frame 20 µs
With r.o. clock= 150 MHz

Excellent detection performance despite modest epi layer thickness
Architecture validated for next steps: tech.with thick epi layer, rad. Tolerant pixel at Troom, 

ADC, sparsification etc.
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Triple well CMOS MAPS (I)
• Use of commercial triple-well CMOS process proposed to 

address some limitations of conventional MAPS
– improve readout speed with in-pixel signal processing
– improve single pixel signal with a larger collecting electrode 

SLIM5-Collaboration

This feature exploited for a new approach in the design of CMOS pixels:
• The deep n-well can be used as the collecting electrode 

• A full signal processing circuit can be implemented at the pixel level overlaying 
NMOS transistors on the collecting electrode area

In triple-well processes a deep 
n-well is used to provide N-
channel MOSFETs with better 
insulation from digital signals
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Triple well CMOS MAPS (II)
Standard processing chain for capacitive detector implemented at pixel level

PRE SHAPER DISC LATCH• Charge preamplifier used for Q-V 
conversion:

– Gain is independent of the sensor 
capacitance -> collecting electrode can be 
extended to increase the signal 

• RC-CR shaper with programmable peaking 
time (0.5, 1 and 2 µs)

• A threshold discriminator is used to drive 
a NOR latch featuring an external reset

• Fill factor = deep n-well/total n-well area ≥ 0.85 in the 
prototype test structures high detection efficiency 

Readout scheme compatible with existent architectures 
for data sparsification at the pixel level -> improve 
readout speed 
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• First prototype chip, with 
single pixels, realized in 0.13 
µm triple well CMOS process
(STMicrolectronics)

• Very encouraging results:
– Proof of principle
– S/N = 10 (90Sr β source)

• Single pixel signal ~1250e-
(only 300 e- in conventional 
MAPS!)

• High pixel noise ENC = 125 e-
(due to underestimated deep 
nwell capacitance) 

Landau 
peak 80 mV

1250 2200 3000 (e-)

saturation due 
to low energy 
particle.

90Sr electronsNoise only 
(no source)

threshold

• Pixel matrix (8x8, 50x50 µm2 ) with simple sequential readout 
tested up to 30 MHz.  

• Pixels with varying electrode size (900-2000 µm2) 
• Improved front-end: pixel noise ENC = 50 e-

M.I.P. Expected S/N ~ 25
• Problems: threshold dispersion measured ~300 e-, ground line 

bouncing in digital transitions.

Triple Well MAPS Results

Single 
pixel test 
structures

8 x 8 
matrix + 
dummies

Second prototype under test:



Next steps for triple well MAPS
• Final ambitious goal of the SLIM5 Collaboration is to design a 

monolithic pixel sensor with similar readout functionalities as 
in hybrid pixels (sparsification, time stamping), suitable to be 
used in a trigger (L1) system based on associative memories. 

Test beam in 2008.
• First triple well MAPS prototypes (0.13 µm-ST), with full 

signal processing at the pixel level, demonstrated capability 
to detect ionizing radiation with good S/N.

• Next prototypes (Aug-Nov ‘06) will improve significantly 
threshold dispersion (to noise level) and test readout 
architecture with data sparsification and time stamp.

• Radiation Tolerance should still be investigated: 
– Design with large collecting electrode expected to be more rad

hard against non-ionizing radiation.
– Charge preamp. with continuous reset less sensitive to leakage 

current increase from ionizing radiation 
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Applications of MAPS in future experiments

• First detectors made of CMOS MAPS coming soon: 
– MIMOSA sensors will equip 

• STAR Heavy Flavour Tagger:
– 2008 analog output, 4 ms readout time 
– 2011 digital output ~ 200 µs frame r.o. time

• EUDET beam telescope for ILC R&D:
– 2007 demonstrator with analog output 
– 2008 final device with digital output

• CMOS MAPS developed also for: 
– ILC Vertex Detector: R&D France, UK, USA, Italy…
– SuperBFactory Vertex Detector: R&D in Hawaii (Belle), 

Italy (BaBar) 
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Conclusions
• Future vertex detectors need a new technology 

(granular, thin, fast…) and CMOS sensors could 
potentially accommodate all the requests

• Excellent tracking performance established in the 
first years of R&D on CMOS MAPS

• The MAPS community, very active and still growing, has 
still a lot to do in the coming years to convert a good 
idea into a real operating detector for the most 
challenging applications

• Main R&D directions:
– High readout speed MAPS, digital output & sparsification
– Radiation tolerance 
– Thinning procedure
– New fabrication processes    
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