Characterization of 3D thermal neutron semiconductor detectors

J.Uher¹, C.Fröjdh², J.Jakůbek¹, C.Kenney³, Z.Kohout⁴, V.Linhart¹, S.Parker⁵, S.Petersson², S.Pospíšil¹, G.Thungström²

(1) Institute of Experimental and Applied Physics, Czech Technical University in Prague, Czech Republic

(2) Mid-Sweden University, Sundsvall, Sweden

(3) MBC, Stanford Nanofabrication Facility, Stanford University, CA, USA

(4) Faculty of Mechanical Engineering, Czech Technical University in Prague, Czech Republic

(5) University of Hawaii, Honolulu, HI, USA

This work has been done within the 3D-RID project and the Medipix collaboration.

Outline

Motivation – why neutron detectors?
Neutron detection principle
Planar silicon neutron detectors
3D detectors – simulations
3D detectors – measurements
Conclusions and further outlook

Motivation – neutron radiography

ď

- While X-rays are attenuated more effectively by heavier materials like metals, neutrons allow to image some light materials such as hydrogenous substances with high contrast.
- Neutron radiography can serve as complementary technique to X-ray radiography

X-rays

Neutrons

In the X-ray image, the metal parts of the photo camera are seen clearly, while the neutron radiogram shows details of the plastic parts.

Medipix pixel device

Pragu

University in

Czech Technical

nstitute of Experimental

- Planar 300 μm thick silicon pixel detector (GaAs and CdTe also available)
- Bump-bonded to Medipix readout chip containing amplifier, discriminator and counter for each pixel.

Medipix-2

Pixels: 256 x 256 Pixel size: 55 x 55 μ m² Area: 1.5 x 1.5 cm²

 α, β, γ

Medipix-2 Quad Pixels: 512 x 512 Pixel size: 55 x 55 μ m² Area: $3 \times 3 \text{ cm}^2$

IWORID-8, 04/07/2006

Adaptation of a silicon detector

Silicon pixel detector can not detect neutrons directly.

⇒ Conversion of thermal neutrons to detectable radiation in a converter layer deposited on the detector surface.

⁵ Li:	⁶ Li + n $\rightarrow \alpha$ (2.05 MeV) + ³ H (2.72 MeV)	
¹⁰ B:	¹⁰ B + n → α (1.47 MeV) + ⁷ Li (0.84 MeV) + γ (0.48MeV) ¹⁰ B + n → α (1.78 MeV) + ⁷ Li (1.01 MeV)	(93.7%) (6.3%)
¹¹³ Cd:	¹¹³ Cd + n \rightarrow ¹¹⁴ Cd + γ (0.56MeV) + <i>conversion electrons</i>	
¹⁵⁵ Gd:	¹⁵⁵ Gd + n \rightarrow ¹⁵⁶ Gd + γ (0.09, 0.20, 0.30 MeV) + <i>conversion electrons</i>	
¹⁵⁷ Gd:	157 Gd + n \rightarrow 158 Gd + γ (0.08, 0.18, 0.28 MeV) + <i>conversion electrons</i>	
Detect	or:	Convertor
300 µm †	thick silicon pixel detector	Converter
pixel siz	e 55 μm) bump bonded to	Detector chip
Medipix-	2 readout chip.	Bump-bondin
		Readout chip

Good spatial resolution

IWORID-8, 04/07/2006

Sample objects: wrist watch

Medipix2 quad (at PSI, 2005):

IWORID-8, 04/07/2006

Good background suppression

Background can be very effectively suppressed!

IWORID-8, 04/07/2006

Medipix

Drawback – a lower efficiency of the planar geometry

Institute of Experimental

Czech Technical

⁶LiF, enrichment 90%

Amorphous ¹⁰B, enrichment 80%

Efficiencies are comparable. Higher cross section of ¹⁰B does not spawn a significant increase of efficiency.

Detection efficiency of the planar detector can not be more than ~5%!

IWORID-8, 04/07/2006

Obverse and adverse irradiation

Irradiation from back side is useful especially when comparing different detectors and converters – the effect of self-shielding and the necessity of precise converter layer thickness control are eliminated.

IWORID-8, 04/07/2006

Measured and simulated spectra of deposited energy

nstitute of Experimental and Applied Physics

IWORID-8, 04/07/2006

"Egg plate" 2D type (with enlarged surface to increase the detector efficiency)

IWORID-8, 04/07/2006

Neutron array modification

IWORID-8, 04/07/2006

Inverse pyramids

Note: exposure time of a neutron imaging detector can be by 28% shorter to get the same SNR!

(samples from Sundsvall, Sweden)

Measured and simulated spectra of deposited energy

and Applied Physics Pragu University in nstitute of Experimental **Czech Technical**

Maximal efficiency: ~32%

Maximal efficiency: ~27%

The optimal pore size: from 30 to 70 μ m depending on ⁶LiF converter filling density. It is achievable with current semiconductor technologies.

A question unanswered by simulations: What is a feasible wall thickness?

IWORID-8, 04/07/2006

How this silicon walls still work?

Various pillars with sizes ranging from 808 µm to 10 μm.

Heights of pillars are 80 and 200 µm.

A sample contacted with probes

Samples were prepared by Chris Kenney

Institut

p+ pn junction on bottom

n

IWORID-8, 04/07/2006

²⁴¹Am alpha spectra of 80 μ m tall pillars

and Applied Physics

Institute of Experimental

Czech Technical

Spectrum - pillar 327 x 10 um

Range of 5.41 MeV alphas from ²⁴¹Am in silicon is 28.2 μ m => they deposit only part of their energy in the thin wall.

IWORID-8, 04/07/2006

Relative peak position

An important conclusion of this measurement:

10 μ m wide and 80 μ m high silicon walls still work fine as a detector.

IWORID-8, 04/07/2006

and Applied Physics

Institute of Experimental

Czech Technical

University in Pragu

Conclusion and future work

Applied Physi

ש

echnical

Czech

nstitute of Experimenta

Behind us:

- Tests of planar single pad detectors with thermal neutrons
- Validation of simulations
- Simulations of 3D structure detection efficiency
- Measurements of silicon microstructures as heavy charged particles detectors
- Tests of structure filling

Ahead of us:

- Tests of 3D single pad detectors with thermal neutrons
- Medipix device with 3D thermal neutron detector
- Devices for fast neutrons
- Optimization of structures for different applications

Thanks a lot for your attention

IWORID-8, 04/07/2006

Backup slides

Simulation package

Examples of created structures

Photo-electrochemical etching (KTH, Stockholm)

Laser ablation (University of Glasgow)

IWORID-8, 04/07/2006

3D stuffed detector

A next step in the development would be a 3D detector diode with etched pores filled with a neutron converter.

3D geometry arrays

- comparison of cylindrical vs. square ¹⁰B converter

Fixed wall thickness – variance in the converter / cell size

Square

Maximal efficiency: ~36%

Maximal efficiency: ~31%

The detection efficiency is slightly higher than for ⁶LiF, BUT the simulation does not include insensitive layers (passivation, contacts, etc.) which will turn the results in favor of ⁶LiF.

The unanswered question still remains: What is a feasible wall thickness?

IWORID-8, 04/07/2006

²⁴¹Am alpha spectra of 80 μm tall pillars

IWORID-8, 04/07/2006

Pores filling using pressure

Pores filling using pressure

IWORID-8, 04/07/2006

Pores filling using pressure

Roentgenogram of filled structures

Estimated average filling depth is $150 \mu m$

IWORID-8, 04/07/2006